

Britain's Biggest Magazine For The Sinclair User

$$
2 \times 5 e^{20 c r u m}
$$

ABLAZE for Spectrum

 - Machine code games to try Chess programs compared- Business and education with your Sinclair computer
- Add a keyboard to your spectrum, $\mathbf{z \times 8 0}$ or $\mathbf{2 x} 89$

$$
\begin{aligned}
& \text { - rer } 120 \text { poges of } \\
& \text { minounditon and prograns } \\
& 10-180,15: 1
\end{aligned}
$$

ZX 99

AUTOMATIC TAPE CONTROLLER FOR THE SINCLAIR ZX81

- DATA PROCESSING

The ZX99 cives you software control of up to four tape drives (two for reading, two for writing) allowing merging of data files. This is achieved by using the remote sockets of the tape drives, controlled by USR statements or commands.

- RS232C INTERFACE

The ZX99 has an RS232C output allowing connection with any such printer using the full ASCIIcharacter code (you can now print on plain paper in upper or lower case, and up to 132 characters per line) at a variable baud rate up to 9,600

- SPECIAL FEATURES

There are so many special features it is difficult to list them all, for example:
AUTOMATIC TAPE COPY: You can copy a data file regardless of your memory capacity as it is processed through the Sinclair block by block.
TAPE BLOCK SKIP: Without destroying the contents of RAM DIAGNOSTIC INFORMATION: To assist in achieving the best recording settings.

The ZX99 contains a 2 K ROM which acts as an extension to the firmware in the Sinclair ROM. The ZX99's ROM contains the tape drive operating system and the conversion to ASCII for the RS232C output.
There is an extension board on the rear to plug in your RAM pack (larger than 16 K if required). The unit is supplied with one special tape drive lead, more are available at $£ 1$ each.

- ZX99 SOFTWARE

We now have available "Editor 99", a quality word processing program including mail-merge, supplied on cassette for $£ 9.95$. Also following soon:

* Stock Control (October)
* Sales Ledger (November)
* Business Accounts
* Debtors Ledger
* Tax Accounting

Dept. ZX2 Data - Assette, 44 Shroton Street, London NW1 6UG. 01-258 0409

2X Computing Vol. One
Number Three Oct/Nov 1982

Editor: Tim Hartnell Editorial Assistant: Helen Bruff Advertising Manager: Neil Johnstone. Managing Editor: Ron Harris Managing Director: T J Connell

Origination and design by MM Design \& Print, 145 Charing Cross Road, London WC2H OEE.

Published by Argus Specialist Publications Ltd 145 Charing Cross Road, London WC2H OEE.

CONTENTS

Letters

You, our readers, speak out on matters that interest, incense, infuriate, intrigue and involve you. Tim Hartnell replies.

Hints'n Tips

A very useful collection of very useful things you should know when writing those very useful programs!

FoxingAbout

No way of chickening out of this exciting game! Time to be foxy and get the bird in a coup chase!

Adding a
 Keyboard
 24

Fed up with the ZX cramps? Make life easier for yourself by adding a customised keyboard to your ZX Computer. Finger-clickin' good!

Slot Machine Fever 26

A 16 K program for the ZX 81 that will let you get the drop on the bank. Lots of fun with some clever graphics.

ZX Computing is constantly on the look-out for well

 written articles and programs. If you think that your efforts meet our standards please feel free to submit your work to us for consideration.Material should be typed if possible. Any programs submitted must be listed, cassette tapes alone will not be accepted, and should be accompanied by documentation to explain how they work and make it easy to run them. All submissions will be acknowledged. Any published work will be paid for. All work for consideration should be sent to the Editor at our Charing Cross Road address.

Microsanda Bus . . 31

Not the 24A to Kilburn High Road, but the S100 to printers or VDU, ZX Computing takes the mystery out of I/O.

Ready, Steady, co! 32

Stopwatches at the ready as Stephen Tyler and Mark Dulling put some popular computers through their paces.

HardwareReviews35

Three pages of goodies to expand your ZX horizons. Plenty to talk about here, as our reviewers found out

Yellow ZX of 80!
 38

All the way from Sweden! A new version of 'The Yellow Rose of Texas' for the ZX80.

Ground-TO-Air Missile

No prizes for guessing the aim of this exciting and fast-moving game. The prizes come for aiming straight - and fast.

Moving with the FIOW

Flowcharts are an essential part of learning to write large programs. If properly used they generate good routines. Here's how.

What Is Your Defence?

Save the Earth (again!) or any other planet you fancy with this ingenious space opera offering.

Board-Game Design

The secret of how to make your ZX think it's a chess master, or a general, or a star-fighter-and win!

Hit the Deck

Pit your wits against the ZX wind and try to land your plane on the aircraft carrier. A must for all aspiring pilots!

ALittle Joy

Moving things around easier comes expensive for the $\mathrm{Z} \times 81$. Is the convenience worth the cost? We find out.

A Test ofnerves

So you think you're James Hunt, (who's he?). This program will sort out the Sunday drivers!

Going Gregorian

Make a date to make dates with our informative program to handle your diary.

Porrive

$2 \times$ Computing is published bi-monthly on the fourth Friday of the month. Distributed by: Argus Press Sales \& Distribution Ltd, $12-18$ Paul Street, London EC2A 4 JS $01-247$ 8233. Printed by: Henry Garnett Ltd., Rotherharn.
The contents of this publication including all articles, designs, plans, drawings and programs and all copyright and other intellectual property rights therein belong to Argus Specialist Publications Ltd. All rights conferred by the Law of Copyright and other intellectual property rights and by virtue of international copyright conventions are specifically reserved to Argus Specialist Publications Ltd. Any reproduction requires the prior written consent of Argus Specialist Publications Lid. Argus Specialist Publications Ltd 1982

News
 65

Five pages of all the latest and greatest things to happen to ZX computers. If it matters, it's here!

Doodlebug

An ingenious little game with a novel programming twist.

Getting some Order

Our editor has devised two invaluable programs for the ZX81 and Spectrum to help you get organised.

SoftwareReviews 74

There are hundreds of programs available for the ZX computers. We show you some of the best.

Navarone Ablaze . 78

Time for Spectrum owners to strap themselves into the AA guns, dry their palms and prepare to do battle!

Structured
 Programming

About time you improved your programming! We all ought to do things properly Now you can!

Allin Proportion . 84

Spaces are tricky things to put into typewritten copy. Doing it proportionally was even harder. Until now. ZX-81's solve the problem.

Awayintospace . 85

A thrilling new game guaranteed to bring out the Captain Kirk in you!

Highsecurity

Try and outwit the guards and get to the treasure in this "high intelligence" game for the 16 K ZX81 by Paul Holmes.

Magic Dollar

Escape from the clutches of the ZX81 before it traps you in this clever game!

Spectrumincode . 93

Master machine code mysteries on your multi-colour monster. This article makes it easy and fast.

Secret of lifel 97

Don't say you never wanted to know it? Everybody does - and now your ZX81 can be made to reveal all.

Idealfor Schools?. 98

We take a look at the ZX in the classroom.

Watts That?
 103

A 16 K program that's ideal for physics students who are swamped with calculations.

ACSeries Circuits 104

Make your ZX draw circuits and calculate the values for you. Invaluable for electronics fans everywhere.

2X-81 Tape Directory

108

A quick and easy way to store programs on a tape and be able to find them again - fast!

Linear Programming and OPTIMAX

A program designed to give the $\mathrm{ZX81}$ owner access to a decision-aiding technique.

Along the Wire . . 114

Two challenging 16 K programs from Daniel Haywood, including an ingenious device for storing those pictures you've created.

Computer/ Instructor

A live-in teacher to tell you all you need to know.

Battle of the Chessmen

Two of the best chess programs on the market do battle in this ZX Computing review. Who wins out?

Make Your $\mathbf{Z X}$ Work!
 122

When your ZX-81 tires of playing games, make it earn its keep with this utility program.

Worth 1000 words?

Picturesque point the way to a more impressive display!

Specifications . . 128

Our invaluable quick reference guide to the ZX ranges of computers and peripherals. All the facts.

Sinclair ZX Spectu

16K or 48K RAM... full-size movingkey keyboard... colour and sound... high-resolution graphics...

 From only $\ddagger 125$!First, there was the world-beating Sinclair ZX80. The first personal computer for under $£ 100$.

Then, the ZX81. With up to 16K RAM available, and the ZX Printer. Giving more power and more flexibility. Together, they've sold over 500,000 so far, to make Sinclair world leaders in personal computing. And the ZX 81 remains the ideal low-cost introduction to computing.

Now there's the ZX Spectrum! With up to 48 K of RAM. A full-size moving-key keyboard. Vivid colour and sound. Highresolution graphics. And a low price that's unrivalled.

Professional powerpersonal computer price!

The ZX Spectrum incorporates all the proven features of the ZX81. But its new 16K BASIC ROM dramatically increases your computing power.

You have access to a range of 8 colours for foreground, background and border, together with a sound generator and high-resolution graphics.

You have the facility to support separate data files.

You have a choice of storage capacities (governed by the amount of RAM). 16 K of RAM (which you can uprate later to 48 K of RAM) or a massive 48 K of RAM.

Yet the price of the Spectrum 16 K is an amazing $£ 125$! Even the popular 48 K version costs only $£ 175$!

You may decide to begin with the 16 K version. If so, you can still return it later for an upgrade. The cost? Around $£ 60$.

Ready to use today,

 easy to expand tomorrowYour ZX Spectrum comes with a mains adaptor and all the necessary leads to connect to most cassette recorders and TVs (colour or black and white).

Employing Sinclair BASIC (now used in over 500,000 computers worldwide) the ZX Spectrum comes complete with two manuals which together represent a detailed course in BASIC programming. Whether you're a beginner or a competent programmer, you'll find them both of immense help. Depending on your computer experience, you'll quickly be moving into the colourful world of ZX Spectrum professional-level computing.

There's no need to stop there. The ZX Printer - available now - is fully compatible with the ZX Spectrum. And later this year there will be Microdrives for massive amounts of extra on-line storage, plus an RS232 /network interface board.

Key features of the Sinclair ZX Spectrum

- Full colour - 8 colours each for foreground, background and border, plus flashing and brightness-intensity control.
- Sound-BEEP command with variable pitch and duration.
- Massive RAM-16K or 48 K .
- Full-size moving-key keyboard - all keys at normal typewriter pitch, with repeat facility on each key.
- High-resolution -256 dots horizontally $\times 192$ vertically, each individually addressable for true highresolution graphics.
- ASCII character set - with upper- and lower-case characters.
- Teletext-compatible-user software can generate 40 characters per line or other settings.
- High speed LOAD \& SAVE-16K in 100 seconds via cassette, with VERIFY \& MERGE for programs and separate data files.
- Sinclair 16K extended BASICincorporating unique 'one-touch' keyword entry, syntax check, and report codes.

The ZX Printeravailable now

Designed exclusively for use with the Sinclair ZX range of computers, the printer offers ZX Spectrum owners the full ASCII character set-including lower-case characters and high-resolution graphics.

A special feature is COPY which prints out exactly what is on the whole TV screen without the need for further instructions. Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZX Printer connects to the rear of your ZX Spectrum. A roll of paper (65 ft long and 4 in wide) is supplied, along with full instructions. Further supplies of paper are available in packs of five rolls.

The ZX Microdrivecoming soon

The new Microdrives, designed especially for the ZX Spectrum, are set to change the face of personal computing.

Each Microdrive is capable of holding up to 100 K bytes using a single interchangeable microfloppy.

The transfer rate is 16 K bytes per second, with average access time of 3.5 seconds. And you'll be able to connect up to 8ZX Microdrives to your ZX Spectrum.

All the BASIC commands required for the Microdrives are included on the Spectrum.

A remarkable breakthrough at a remarkable price. The Microdrives are available later this year, for around $£ 50$.

How to order your ZX Spectrum

BY PHONE-Access, Barclaycard or Trustcard holders can call 01-2000200 for personal attention 24 hours a day, every day. BY FREEPOST-use the no-stamp needed coupon below. You can pay by cheque, postal order, Barclaycard,

Access or Trustcard.
EITHER WAY-please allow up to 28 days for delivery. And there's a 14-day money-back option, of course. We want you to be satisfied beyond doubt - and we have no doubt that you will be.

Qty	Item	Code	Item Price	$\begin{gathered} \text { Total } \\ £ \end{gathered}$
	Sinclair ZX Spectrum-16K RAM version	100	125.00	
	Sinclair ZX Spectrum-48K RAM version	101	175.00	
	Sinclair ZX Printer	27	59.95	
	Printer paper (pack of 5 rolls)	16	11.95	
	Postage and packing: orders under £100	28	2.95	
	orders over $£ 100$	29	4.95	

Please tick if you require a VAT receipt \square
*I enclose a cheque/postal order payable to Sinclair Research Ltd for $£$
*Please charge to my Access/Barclaycard/Trustcard account no.
*Please delete/complete
as applicable
Signature
PLEASE PRINT

Address
L| 1

FREEPOST-no stamp needed. Prices apply to UK only. Export prices on application.

Welcome

Welcome to the third issue of $Z X$ Computing. The Spectrum has certainly set the ZX world on fire, and in this issue we bring you more articles and programs designed to help you develop your programming skills on the Spectrum.

We've not neglected the ZX81 nor the ZX80, and you'll find these computers are well represented in this issue.

Before I outline the contents of the issue for you, I'd like to draw your attention to our competition. We're giving away a $Z X$ printer, and five sets of the ZX81 software which Uncle Clive is selling. The winner of the competition gets a printer, plus a set of software, and there are four prizes of software for the runners-up. Details of the competition are included in the 'News' section of this issue.

When you compare the published software in magazines today compared with the programs which were published back at the beginning of ZX history, you see how much programming standards have improved. In this issue, we have an article on 'structured programming' which may well help you to improve your own standards of program writing.

Tim Roger's program PROPORTIONAL SPACING is designed to solve the problem of messy word output. The programnot only ensures that words are not split at the end of lines, but also 'pads out' each line in order to use all 32 characters across.

This program demands a 16 K ZX81, as does the one by N G Strong, of Epsom, an engineer who retired before the advent of personal computers and even pocket calculators.

The ability of the $\mathrm{ZX81}$ to SAVE and LOAD a named program on tape opens up many interesting possibilities. James Calderwood, from Coleraine, explains how it is possible to load a program from a directory, by just entering the number printed beside the program of your choice in a menu on the screen.

So that things don't get too serious, this issue of $Z X$ Computing has a number of very fine games for you to play, including a well-written GRAND PRIX program from Jim Archer, of Frimley, Surrey.

Another great game is FOX

AND CHICKEN, written by Jim McCartney of Coleraine. This program is a mixture of machine code and BASIC, and examining the listing should help you further develop your programming skills. Stephen Adams looks at the electronics beneath ZX keyboards, and tells you how to add an extension keyboard of your own.

If you're bogged down with a bug in your program, a flowchart can help. Henry Budgett, editor of 'Computing Today', tells you how to go about flowcharting in your relentless search for bugs.

In our last issue of $Z \times$ Computing, we introduced a new section - ZX Education - and this has proved very popular, so we bring you a slightly expanded edcuational section in this issue. If your school uses ZX computers in any way, why not write into the magazine and let us know. We'd love to be able to run a photograph of you and your classmates using their ZX computers, and share your ideas for using the computers in education.

We make sure that every issue of the magazine has several major articles and programs, as well as a number of shorter ones, so that those who want a really meaty program will have something to get their teeth into. One of the programs which fits this classification in this issue is a superb 7 K program for the ZX81 - SLOT MACHINE - written by Adam Waring and Mike Cleverley of Hull. The program uses a flashy machine code routine to reverse the display when you win . . . and at the end of the game when you lose.

Another 'heavy' article comes from Thomas Ballantyne, Paisley, Scotland, who has written a program devised to calculate and illustrate, using circuit and phasor diagrams, the characteristics of a series A.C. electrical circuit.

Contributions

We're on the lookout now for good programs and articles for the next issue of $Z X$ Computing. Program listings are vital (rather than just providing the program on cassette), along with clear instructions on what the program does, how it works, and what the user will see when he or she runs it.

Any kinds of programs are useful, but we are particularly interested in ones which use ZX BASIC in particularly clever ways. or in ones which contain routines which can be re-used in other programs.

It is vital that the programs you send us are totally original, and not 'adapted' from programs in other magazines, or in books. I've even had two programs submitted to me here at $Z \times$ Computing which were 'borrowed' from my own books.

All contributions we use are paid for, of course, so if you'd like to contribute to forthcoming issues and make a bit of pocket money. look through the contents of this issue, and if you can write as well, or better than, our present contributors, let's hear from you. But for now, get down to enjoying this issue with your ZX computer.

TIM HARTNELL, Editor

Letters

Memory query

Dear ZX Computing,
I have read reports that the 16 K Spectrum uses 7 K to provide the colour and graphics, leaving only 9K of "usable" memory. There are some marvellous Adventure programs around for the ZX81 which need the 16 K RAMpack. As a layman about to buy his first computer, am I right in thinking that these - when translated into Spectrum BASIC, will not fit into what is left of its standard memory and that I would therefore need the 48 K version to take them? I appreciate the 48 K would give me much more scope as more involved software is developed but it is $£ 50$ more initially.

The ZX81's 16K RAMpack has dropped $£ 20$ as chips have become cheaper. Is it likely that if I bought a 16 K Spectrum, the £60 cost to up-grade it to 48 K might be reduced in the future?

I have already seen one ad. for a 64 K RAMpack to stick-on the back to give it 80 K . If I bought such a non-Sinclair addon, do I just plug it in and carry on? I have read articles (which I profess not to wholly understand) which say the machine does not know how much memory it has got (if non-
standard) and starts throwing in phrases like PEEK, POKE and altering RAMTOP.

Please answer in basic ENGLISH and not English BASIC!

Richard Carsons,
Ewell, Surrey

- Horrors/ Do not, repeat not, connect anything except the $Z X$ printer to the back of the Spectrum (apart from products specifically produced for the Spectrum). You will damage both the computer and the addon memory if you plug memory designed for the ZX81 into the Spectrum. Many programs which are marked ' 16 K ' really should be marked 'more than $1 K^{\prime}$, as few so-called $16 K$ programs actually use all the available memory. However, an ADVENTURE program is likely to use just about all the available memory, so a ZX81 ADVENTURE program designed for a 16 K ZX81 is not likely to fit on a Spectrum. There has been no discussion, apart from the information in the leaflet, about the 'upgrade' from a 16 K to a 48 K but it is possible that private firms may in due course be offering this service at a lower price than the Sinclair one.

No speaka da latin
Dear ZX Computing. I enjoyed your 'Pig-Latin Translator' in the last issue of ZX Computing, and thought you might be interested in seeing the results of my taking up the challenge to write a 'Pig-Latin Translator'. All the translating is done in lines 40 and 45.

The second program is my own 'Latin translator', which produces different results to the one you published in your last issue. Lines 12, 14 and 16 are
the endings of words. Line 40 forms the Latin text, and the subroutine puts UM or US onto the end of a word if it ends in ING, ER or ND.

EP Whitby,
Chilwell, Notts

- Thanks very much for the programs. They are certainly a good development from the one we published in issue two. We're always interested in seeing developments of the programs published in $Z X$ Computing.

Bouquets

Dear ZX Computing． Just a note to congratulate you on the contents of your second issue．Even the printing had improved，apart from the VAT programs in the business section．

Keep up the good work．．． and I＇ll keep on buying it．

Martin Shaftesbury，
Wilmslow，Cheshire

Improving your tiling

Dear ZX Computing， The program＇tile crazy＇by K Mahogany in issue 2 of ZX Computing had a number of faults to my way of thinking． First，it asked for the destination of each move when， in fact，there is always only one valid destination－the square from which the previous move was made．

Second，it did not check that each move was being made from a square adjacent to the empty one．It was easy to cheat

Third，it always started from the same position as set up in a pair of DATA statements．I am referring here to the Spectrum version，of course．

Finally，that initial position was such that it was impossible to achieve the correct alphabetical order by legal moves！The best that could be achieved was an order in which one pair of letters was interchanged and，as most readers will probably be aware， in this type of puzzle，it is only
possible to interchange an even number of pairs of letters．

My version of the program （for the Spectrum）corrects these faults and a printout is enclosed，and below I detail the changes I have made．

In the data statement on line 430，one pair of letters has been interchanged to give a valid starting position．Also the space， represented by -32 ，has been moved to the end of the statement to give a known starting position for the program to work from．This does not affect the validity of the order of the letters．

The RETURN at line 410 has been changed to GOTO 500．At line 500 onward coding has been added to shuffle the initial position by performing a random， even number of interchanges of pairs of letters randomly selected leaving square 16 empty．This shuffle preserves the validity of the initial state．

Variable e is set to 16 in line 360 and is subsequently used for the destination of the requested move in lines 100 and 110 and updated to the new empty square in line 115.

In line 70 the program tests that the requested move origin is orthogonally adjacent to the empty square．

Some cosmetic changes have also been made to the PRINT statements in lines 230－260 but these were just to satisfy personal preferences．

P G Moulton． Leigh－on－Sea，Essex

```
        1Q REM SLE'ING
        5Q G0 SUE 200
        GO INPUT INK 7;"which one to m
        ove7 !;x
        7% If ABS (x-e) {>4 AND ABS (x-
e)}<>1\mathrm{ THEN GO TO GU
    100 LET ヨ (\varepsilon)=ヨ (x)
    20 LET a (x) =32
    1.5 LET e=x
    220 LET g0=go+1: GO TO 50
    200 PRINT AT 0,3; PAPER 7: INK
3;"g#, #NUMber "; INK 2;90: PRINT
    230 PRINT INK 8;"* "
```



```
    24Q PRINT INK 8;", "
    CHR年 a (6); CHR$ a (7); CHR事年(8),"
    250 PRINT INK 8;" .";CHR$ a (9)
```



```
5)CHR$ a (144);CHR要.a (15); CHR$ a (1
5)
    2うO RETURN
    330 REM initialize
    340 DIM अ (IE)
    350 FGR b=1 TO 16: READ m: LET
a (b) =m+54: NEXT b
    360 LET e=16
    390 LET go=1 BORDER 2: CLS
    410 GOTOO 500 , 5, 2, 11,6,1,4,12
    420 DATA 9,14,5,2,11,6,1,4,1
    500 LET n=iRND*2Ó+i)*2
    510 FOR i=2 TO n
    520 LET }x=RNND*15+
    S30 IF a (x)=32 THEN GO TO 520
    540 LET y=RND*15+1
```



```
0}54
    E5& LET j=a (x)
    570 LET a a (x)=a (y)
    580 LET a (y)=j
    590 NEXT i
    S00 RETURN
```


All five of the currently available Memopaks are housed in elegant black anodised aluminium cases, and are styled to fit wobble-free onto the back of the ZX81, allowing more add-ons (from Memotech or Sinclair) to be connected.

> MEMOPAK 64K MEMORY EXTENSION
> The 64K Memopak extends the memory of the ZX81 by 56 K , and with the ZX81 gives 64 K , which is neither switched nor paged and is directly addressable. The unit is user transparent and accepts commands such as 10 DIM A(9000).

Breakdown of memory areas. 0.8 K . Sinclair ROM. 8-16K.This area can be used to hold machine code for communication between programmes or peripherais. $16-64 \mathrm{~K}$-A straight 48 K for normal Basic use.

MEMOPAK 32 K and 16 K MEMORY EXTENSIONS

These two packs extend and complete the Memotech RAM range (for the time beingl) A notable feature of the 32 K pack is that it will run in tandern with the Sinclair 16 K memory extension to give 48 K RAM total.

MEMOPAK HIGH RES GRAPHICS PACK

HRG Main Features - - Fully programmabie Hi-Res (192×248 pixels) • Video page is both memory and bit mapped and can be located anywhere in RAM. - Number of Video pages is limited only by RAM size (each takes about 6.5K RAM) - Instant inverse video on/off gives flashing characters \cdot Video pages can be superimposed \bullet Video page access is similar to Basic plot/unplot commands \bullet Contains 2 K EPROM monitor with full range of graphics subroutines controlled by machine code or USR function

MEMOPAK CENTRONICS TYPE PARALLEL PRINTER INTERFACE

Main Features - - Interfaces ZX8I and parallel printers of the Centronics type • Enables use of a range of dot matrix and daisy wheel printers with $\mathrm{ZX81} \cdot$ Compatible with $\mathrm{ZX81}$ Basic. prints from LLIST, LPRINT and COPY - Contains firmware to convert ZX8I characters to ASCII code - Gives lower-case characters from ZX81 inverse character set

We want to be sure you are satisfied with your Memopak - so we offer a 14 -day money back Guarantee on all our products. Memotech Limited, 3 Collins Street, Oxford OX4 1XL, England Tel: Oxford (0865) 722102 Telex: 837220 Orchid G

Technique

More hints 'n' tips

 to improveyour

In our last issue, Dilwyn Jones, an experienced $\mathbf{Z X}$ programmer from North Wales shared a number of useful techniques for working with the $\mathbf{Z X 8 1}$. This article proved so popular, we've asked Dilwyn to pass on a few more ideas.

Suppose you wanted a character array to hold the names of the months. There are twelve months in one year and the name of the longest month is SEPTEMBER, which consists of nine letters. On your computer you would say: 10 DIM A $\$(12,9)$ to give you an array of twelve words each up to nine letters long. READ/DATA would be very useful to assign the names to the array, but the computer does not have this facility. So you would probably end up doing this:

20 FOR $\mathrm{N}=1$ TO 12
30 INPUT A\$(N)
40 NEXT N
and the variables could be saved on tape along with the program once you've entered all the data into the array. When you came to use the array you would find that names which were less than nine letters long had been stretched out with spaces at the end to make them nine letters long to fit the array. So if you had the line

500 PRINT A\$(5); "IS THE MONTH OF YOUR BIRTHDAY"' you would end up with MAY IS THE MONTH OF YOUR BIRTHDAY All those extra spaces are ugly - it might not
bother you with a word like DECEMBER, where you would get only one extra space, but with the word MAY you get six extra unwanted spaces, so we need to ensure that any trailing spaces (spaces after the word) are not PRINTed. Here is a routine to do this.

You will need to specify which part of the array is used which word if you like - and this is represented by an X in the listing. Add these lines to the ones above:
490 INPUT X
500 GOSUB 6000
510 PRINT A\$(X, TO A):" IS THE MONTH OF YOUR BIRTHDAY"
520 STOP
8000 FOR $A=$ LEN A $\$(X)$ TO 1 STEP - 1
8010IF A $\$(X, A)<>{ }^{\prime \prime}$ " THEN RETURN
8020 NEXT A

8030 RETURN

RUN the program and enter the names of the months one by one in order. As an experiment, try leaving one month as all spaces (just press NEWLINE for one name). You might expect an error to arise if $\mathrm{A} \$(\mathrm{X})$ is composed en-
tirely of spaces, but this is all catered for. If this does happen then A will be 0 and $A \$(X$, TO A) will be $A \$(X, 1$ TO 0$)$ which you might expect to give a subscript error. But the computer, as we've seen, has a special interpretation for this kind of expression (where the first figure in a string slice is larger than the second), you will get the empty string, so it seems
you don't have a birthday.
One small note. Look at line 510. It looks as though there's a number missing before TO. This means the same as $A \$(X, 1$ TO A) because if you leave out the number before TO the computer will assume you meant 1 . Don't forget to include the comma before TO.

Having RUN the program

Technique

once, you should have all the names of the months in memory Every time you want to use the program, use GOTO 490 to save having to retype the names of the months every time.

SUPPRESSING THE ERROR REPORT CODES

When you have a program where the display is very important (eg at an exhibition) or educational programs, it can be detracting or even embarrassing trying to explain "those funny little numbers at the bottom of the screen". Funny or not, here is a method whereby you can prevent the error report code from appearing.

The error report code is determined by the value of address 16384, the first system variable. The trick is to POKE numbers into 16384 that do not cause anything to be printed or to print spaces which, of course,
cannot be seen. These values may be POKEd into 16384 for this purpose:-43,70,72,73,74, 75, 76, 77, 79, 81, 82, 89.
Here is an example -
POKE 16384,74
You may find that certain numbers do not produce the desired result with certain programs. In this case, choose another number from the list. SAVE the program on tape before RUNning it if you're at all worried.

GREAT SYSTEM CRASHES

Careless use of POKE can ruin programs by overwriting vital parts or even cause a system crash where the computer appears to seize up and nothing you do will make it do anything except switch off.

Here are some of the exciting things you can do to your computer if you do like abusing it.
(A) Overwrite some of the

NEWLINE characters, particularly in the display file - try this program:
10 LET P = PEEK $16396+$ 256 * PEEK 16397

20 POKEP,O

Now try to get a normal display. The screen appears to have gone haywire if you press NEWLINE after running the program. All it does is find the start of the display file in line 10 from the system variable 16396/16397 which has this specific purpose, and changes the character found normally at this location (a NEWLINE character CHR\$ 118) to a space by using POKE. The poor machine then gets confused when trying to produce a listing.
(B) For some novel displays, try POKEing all the numbers from 0 to 255 into the system variable 16384 that controls the error code.
(C) Load your favourite program, add a line or two to reset the frame counter to zero, and wait for a while to see the result (the frame counter is system variable

16436/7 and is reset to zero by POKE 16436,0 and POKE 16437,0). It may not work every time, but is usually quite effective.
(D) Try this program,

10 POKE 16418,0
20 INPUT AS
Where did the program go?
(E) This is the classic POKE anything anywhere at random. RUN it several times to see the different effects possible.
10 POKE $16384+$ INT (RND* 1024), INT (RND* 1024)

20 GOTO 10

You may like to use the printer if you have one to keep a record of the interesting ones:
10 LET ADDRESS $=16384$ + INT (RND* 1024)
20 LET R = INT (RND* 256)
30 LPRINT "ADDRESS = "'; ADDRESS
40 LPRINT "NUMBER TO
POKE = " R
50 POKE ADDRESS,R
60 GOTO 10
Too much fun gets boring. Back to some more serious things.

LENGTH OF PROGRAMS

Here is how the computer's RAM is organised:
(i) system variables: 125 bytes
(ii) program alone excluding system variables, screen etc.
PRINT PEEK $16396+$ 256 •PEEK 16397 16509
(iii) program, variables, system variables and display: PRINT PEEK 16404 + 256 •PEEK 16405 16384

INSERTING NON-

 EDITABLE LINES INTO LISTINGS(iv) memory left for user. This does not take into account the machine stack because the stack pointer cannot be accessed from BASIC:
PRINT PEEK 16386 + 256 •PEEK 16387 PEEK 16412 - 256° PEEK 16413-81 (it is necessary to subtract 81 because that is the length of the statement).

HOW TO FIND THE ADDRESS OF THE BOUNDARIES

16384
16509

PEEK 16396 + 256 * 16397

PEEK 16400 + 256 * PEEK 16401

PEEK 16404 + 256 * PEEK 16405

PEEK 16410 + 256 * PEEK 16411

PEEK 16412 + 256 * PEEK 16413

STACK POINTER - NOT ACCESSIBLE FROM BASIC

PEEK 16386 + 256 * PEEK 16387

PEEK $16388+256$ * 16389

Technique

Normally, if you had a titie/ author REM statement in a listing, it is fairly simple to delete them, eg 1 REM (C) FRED BLOGGS 1982 10. (rest of program)
It is a simple matter to erase these lines using the EDIT facility or by typing in the line number. One method we can use is to change the line number of the first program line to 0 . We know that the first line of a program starts at 16509, so since the line number is stored as the first two bytes of a line, we can use POKE to change these two bytes. Remember the two bytes are stored in the order MORE SIGNIFICANT BYTE followed by the LESS SIGNIFICANT BYTE (ie as you would write it - highest part first then the lowest part).

Here is how to change the line number to 0 .
POKE 16509,0
POKE 16510,0
Now try to delete the first line. Quite secure, isn't it! The only way is to POKE a non-zero line number into 16509,10 . So anybody who knew about the technique could easily delete the line.

A slightly better method is to change a line number in the middle
of a listing. This is more difficult because we have no way of knowing where individual lines start. A starting point is the knowledge that program lines end with a NEWLINE character (CHR\$ 118) and the next line will begin with the line number. Take this example:
10 REM VAT CALCULATOR
20 PRINT "ENTER AMOUNT LESS VAT:" ;
30 INPUT A
40 REM (C) FRED BLOGGS 1982
50 PRINT A
60 PRINT "VAT $=$ "; A * $15 /$ 100
We need to change line 40 to line 0 and keep it located in its present position in the listing to make it difficult to delete or edit. Using the information we have, add these lines to the program:-
8000 폴․ FORF $=16509$ TOPEEK $16396+2$
56*PEEK 16397-3
9010 IF PEEK $\mathrm{F}=118$ AND 256 *PEEK
$(\mathrm{F}+1)+\operatorname{PEEK}(\mathrm{F}+2)=40$ THEN GOTO 90
40
9020 NEXT F
9030 STOP

9040 POKE F + 1,0
9050 POKE F $+2,0$
Now delete lines 9000 to 9050 and then try to delete line O !

Incidentally, it is normally better to insert this new line 0 at a point higher in a listing than line 255 , since it will then be necessary to change 2 bytes of the listing to get rid of line 0 , just to make it a bit safer. Another way to do the same thing is to use the system variable NXTLIN (16425/ 16426) to find the address of the start of the next line, provided you have space to add a few extra lines to the listing. We'll use this example:-

10 REM PATTERNS

20 INPUT AS
30 PRINT A \$:
40 REM (C) FRED BLOGGS

1982

50 GOTO 30
Add these extra lines to the program:

39 LET $A=$ PEEK $16425+$ 256*PEEK 1

6426

41 POKE A,0
42 POKE A $+1,0$
43 STOP

Now use RUN 39 to make the routine work. Once line 40 has been changed to line 0 , delete the extra line. Incidentally, if you like making fools of computers, you can have great fun POKEing all sorts of line numbers into listings. Who said the computer sorts lines into order automatically?

PREVENTING A SCREEN MEMORY OVERFLOW

This routine makes use of the system variable 16442 which refers to the line number of the PRINT position, but does not have the same value as the line number. It starts off at 24 for the top line of the screen, down to 1 for the bottom line. The expression
IF PEEK $16442<4$ THEN CLS So if the PRINT position moves onto line 21 (the lowest line the user can PRINT on) the screen is cleared automatically.

Some programs require that the screen be cleared occasionally to prevent a screen memory overflow when the PRINT position gets down to the bottom of the screen. Here is one way to do this:-

IF PEEK $16442<4$ THEN CLS 16442 is the system variable containing the line number of the PRINT position. It starts off at 24 for the top line, down to 3 for the lowest line available to the programmer and 2 and 1 for the two lines at the bottom of the screen used for INPUT etc. I have used 4, but you could substitute another number if you like.

Normally you can only PRINT on the top 22 lines of the screen display (lines 0 to 21). Any attempt to use the bottom two lines with PRINT is normally rewarded by an error report 5 . You can gain access to these lines by two methods. The simplest is to POKE directly into memory at the location of the bottom two lines of the screen.

If you have more than $31 / 6 \mathrm{~K}$ of memory plugged in (eg if you have a 16 K RAMPACK) so that if the display is at full size, then line 22 starts at (PEEK $16396+256$ * PEEK $16397+727$), ends at (PEEK 16396 + 256 • PEEK 16397 + 758). Line 23 consequently starts at (PEEK $16396+$ 256° PEEK $16397+760$) and ends at (PEEK $16396+256$. PEEK $16397+791$). These addresses will be different if the display file size is altere, as might happen if SCROLL was used. The second method uses PRINT AT and the system variable $\mathrm{DF}-\mathrm{SZ}$ at address 16418 . The number in 16418 says how many lines in the bottom of the screen are not available to the user - normally two. So if we change this number to 0 , we have access to all 24 lines of the screen display and we can use PRINT AT 23, X or PRINT AT $22, \mathrm{X}$.

However, this method comes unstuck when the computer tries to use the bottom of the screen for error reports, \mathbb{N} PUTS, or even SCROLL. You can get a very nasty systems crash

and lose your program if you're unlucky (no lasting damage will be done, but you may have to switch off for a few seconds). The statement POKE 16418,0 must be entered as a line in a program.

It does not work if entered as a direct command without a line number because the computer will reset it automatically when the screen is cleared, or a program is RUN. If you wish to use INPUT during the course of a program then you should POKE 16418,2
to restore the bottom of the screen to normal before attempting to use INPUT, which will of course erase characters PRINTed on line 22 and 23 ! Incidentally, be careful if you're using an unexpanded machine - the display file behaves in a strange way and makes use of 16418 so try not to upset it too much.

To place any particular line number you require at the top of automatic listings, you must first move the cursor to a line number
greater than the one you want at the top. Then enter:-
POKE 16419,NUMBER - INT (NUMBER/256) * 256
POKE 16420,INT(NUMBER/ 256)

Now when you press NEWLINE the automatic listing will begin where you specified (NUMBER is the line you want at the top of the screen). When entering lines when the cursor is at the bottom of the screen, the computer will usually compile the listing 2 or 3
times to get the new line onto the screen listing at the bottom. This is annoying, not to mention timeconsuming. You can circumvent this like this. Type in any line number higher than any shown on screen and which does not exist in the listing (we always use 9999). The listing will change. If you now continue entering lines where you were originally, they appear near the top of the screen and the listing is made properly, saving a lot of frustration.

ZX Spectrum 20 Programs $£ 6.95$

The ZX Spectrum has brought advanced computing power into your home, The Cambridge Colour Collection, a book of 20 programs, is all you need to make it come alive.
No experience required. Simply enter the programs from the book or load them from tape ($£ 2.95$ extra) and run.
Amazing effects. All programs are fully animated using hi-res graphics, colour and sound wherever possible.
Entirely original. None of these programs has ever been published before.
Proven Quality. The author already has 30,000 satisfied purchasers of his book of ZX81 programs.

Hours of entertainment

- Lunar Landing. Control the angle of descent and jet thrust to steer the lunar module to a safe landing on the moon's surface.
- Maze. Find your way out from the centre of a random maze.
- Android Nim. Play the Spectrum at the ancient game of Nim using creatures from outerspace.
- Biorhythms. Plot the cycles of your Emotional, Intellectual and Physical activity. Some would say this is not a game at all.

Improve your mind

- Morse. A complete morse-code training kit. This program will take a complete beginner to R.A.E. proficiency.
- Maths. Adjustable to various levels, this program is an invaluable aid to anyone trying to improve their arithmetic.

Run your life more efficiently

- Home Accounts. Keeping track of your finances with this easy-to-use program will enable you to see at a glance where the money goes and plan your spending more effectively.
- Telephone Address Pad. Instant access to many pages of information.
- Calendar. Displays a 3 month calendar past or future, ideal for planning or tracing past events.

ORDER FORM:

Send Cheque or P.O. with order to:-
Dept. H., Richard Francis Altwasser, 22 Foxhollow, Bar Hill, Cambridge CB3 8EP
Please send me
ㅁ Copies Cambridge Colour Collection Book only $£ 6.95$ each. \square Copies Cambridge Colour Collection Book \& Cassette £9.90 each

Name:

Address:

THE

BUFFER MICRO SHOP

(NEXT TO STREATHAM STATION)

OPEN TUES-SATS 10.30-5.30. CLOSED MONDAYS
THE OLDEST SOFTWARE SHOP EXCLUSIVELY FOR

ZX81

PROGRAMS, GAMES, "ADD-ONS"

MOST OF THE MAIL ORDER ITEMS ADVERTISED IN THIS MAGAZINE AVAILABLE OVER THE COUNTER

LOADING PROBLEMS? TRY OUR INTERFACE BUSINESS \& TECHNICAL DATA HANDLING PROGS; PROPER KEYBOARDS; CONSOLES; VDUs

> The BUFFER Micro Shop, 374a Streatham High Road, London SW16 Tel: 01-769 2887.

ZX81 16K SOFTWARE

ADVENTURE £6.00
100 randomly postioned caves await you. Choose your starting cave with care Pick up all the treasures, (there are 30). Remember, you can only carry 6 at once Beware of the evil magician, the troll and the warped cave. Let the goblin sing in your ear. £10 prize for first person to finish Game save option

CASSETTE DESIGN
You have 10 designs of 24 lines by 32 characters. When you have created yout designs the ZX PRINTER will Lprint them. All cassettes supplied with a sample design Design no 1 contains an example design. You can view, erase, create and SAVE your designs.

METRIC CONVERTER
Convert between imperial and Metric, either way. The program allows you to get a sample printout from the $Z X$ PRINTER of conversions from preser limits. Convert between MPH.KMH. Lengths: Weights, Volumes and areas.

Cheques/PO's payable to:
D J MOODY COMPUTER SOFTWARE, Dept PCT1, 1 Starnhill Cottages, Granby Lane, Bingham, Nottinghamshire NG13 8DH.

Nat. Girobank transfers to 406524009.
Write your order on back of transter ship or for non-account holders go to your Post Office and ask for a Transcash slip.

Foxing about

In FOX AND CHICKEN, written by Jim McCartney of Coleraine, you take part in a high speed chase through a maze. Playing the program calls on all your reflexes and luck - and demands an ability to keep cool in a crisis.

The object of this game is to get the chicken out of the maze without having it eaten by the fox. The program contains full instructions from line 100 down.

The program is a mixture of BASIC and machine code which would not suit any other machine. Most of the actual running of the game is in machine code; the BASIC is used to set it up and to draw the maze, etc. The BASIC is well enough annotated for a reasonably competent programmer to find his (her) way around it, but because the machine code can be tricky when it is put in the form of lines 76 and 77, I have given full assembly code details together with a description of the operations in code. Because bugs can easily creep in during the process of transferring coding from my typescript (guaranteed double checked) to your $\mathrm{ZX81}$, check lines 76 and 77 carefully against both the BASIC listing and the machine code listing. If in doubt, check the machine code listing against the assembler codes in the left column, using Appendix A in the ZX 81 handbook. (You will not find the assembler codes for Call KSCAN or Call FINDCHR; these refer to subroutines in the ROM). When you have done all this and everything agrees, SAVE the program before you RUN it! If it crashes, try checking the code again.

FIGURE 1a
How it works
The maze is drawn from line 1200 down, and it resides in the Display file. The address of the byte preceding the Display file is DFILE (line 1218). Each successive line in the display is numbered in the Display file as 33 more than the line above it, that is 32 display characters and a carriage return.

Either the Fox or the Chicken can move to any square next to it, provided that the Code of the character displayed in that square is 0 ; that is, provided that the square is empty. The Fox position is FX and the Chicken position is CK. To save switching between addition and subtraction in the machine code, the machine code references to the positions of these creatures are FX-33 and CK-33 respectively; you can see how this works from Fig. 1. Instead of using a system like Fig. 1a. we use the system in Fig. 1b. instead to explore the territory round FX and CK.

The fox moves automatically, but the chicken responds only to the keys. Each fox move is followed by an opportunity for the chicken to move, which it may or may not do depending on whether an appropriate key has been touched. There are four outcomes:

No key depressed
Fox catches Chicken Chicken escaped Chicken flies

	FX-33:	+0
+32		+34
	+66	

FIGURE 1b
To find its way through all branches of the maze, the fox must turn consistently either to the left or to the right, during each run. This is set up at random in the BASIC program in lines 1680 down. If the fox is, eg, right-turning, the program will a/ determine the direction in which the fox last moved b/ explore the square to the right of this direction, and go there if possible
c/ ELSE explore the square ahead of this direction, and go there if possible
d/ Else ... to the left
e/ Else ... backwards
At least one of these must be available. The fox thus moves to the first vacant square in this sequence. For a left-turning fox, the sequence is left - front - right - back.

The miserable RND function on the ZX 81 needed to be augmented in lines 60-62; other ZX81 enthusiasts who are irritated by RND may find this procedure helpful.

When you have the program up and running and debugged, you can delete lines 76 to 88 before you save the final version. The machine code will now be residing in the REM statement in line 1 ; you can see this when you LIST. Deleting 76 to 88 will speed the loading a bit and give a slightly faster startup.
(RETURN) $\mathrm{C}=20$ go to next fox move, line 21 (CATCH) $\mathrm{C}=40$ go to line 40 (ESCAPE) $\mathrm{C}=50 \mathrm{go}$ to line 50 (JUMP) C $=60$ go to line 60

BASIC LISTING

1 REM 12345678901234567890123456789012345 678901234567890123456789012345678901234 567890123456789012345678901234567890123 123456789012345678901234567890123456789 012345678901234567890123456789012345678 9012345678901234567890
2 GOTO 75
5 REM $* * * * * * * *$ RUN THE GAME
10 SLOW
12 PRINT AT 21,0;"RUN NUMBER" ;MZ
15 FOR $\mathrm{J}=1$ TO 50
16 NEXT J

20 21 30 40 41
42 43 44
45 46 47 48
49
49
50
58
60
61

GOTO S
LET C = USR 16526
GOTO C
LET CK $=33$ + PEEK $16524+256$ *PEEK 16525
PRINT AT 0,12 ;" YUM YUM"
FOR J=1 TO 20
GOSUB 9000
POKE CK, 23
GOSUB 9000
POKE CK, 8
NEXT J
PRINT AT 0,12;" BURP *
GOTO 2000
PRINT AT 0,12;"ESCAPED"
GOTO 2000
LET $R=$ RND
LET $\mathrm{R}=\mathrm{R} * \mathrm{H}-$ INT $(\mathrm{R} * \mathrm{H})$
LET CK $=$ DFILE $+2 *$ INT $(R * 15)+66 *$ INT
(RND * 10) +35
POKE CK, 23
LET $\mathrm{JP}=1$
GOSUB 1700
LET JPNO = JPNO + 1
IF JPNO $=$ F THEN POKE 16622,99
GOTO 21
$\operatorname{REM} * * * * * * * *$ LOAD M/C CODE
FAST
LET A\$ = " 2000002200204222002000003A8240
218640 BE 28032318 FA 2B444D2A83400AC5F060 0097EFEOO2808FE17287CC10318EA3608E5C600 ED4206000E21093600E1C600ED42228340C10A3 28240 CDBB02444D51143E00284DCDBD077EFE21 2812 FE222812FE232812FE242812FE2B2851183 33E20180A3E4218063E0018023E22A8C4OE54FO 600097EFE02807FE18282E11811361706000E21C 60 OED 4228 C4OE1093600"
LET A $\$=$ A $\$+$ " 06000 E14C9C600ED $4206000 E 2109$ 3600C106000E28C9E106000E32C92A8C4006000
E210936000E3CC9"
LET $X=16514$
IF A $\$="$ " THEN GOTO 90
POKE X, 16 *CODE A\$ + CODE A\$(2)-476
LET $\mathrm{X}=\mathrm{X}+1$
LET A $\$=A \$(3$ TO)
GOTO 84
DIM Z(4)
$\operatorname{LET} Z(1)=-33$
LET $Z(2)=-1$
LET $Z(3)=33$
LET $Z(4)=1$
DIM T(7)
DIM J(4)
DIM M(150)
RAND
REM $* * * * * * * *$ INSTRUCTIONS
SLOW
CLS
PRINT "DO YOU WANT THE INSTRUCTIONS? (Y/N)"
PRINT IF INKEY\$ "Y" AND INKEY\$ "N" THEN GOTO
120
IF INKEY\$ = "N" THEN GOTO 200
CLS
PRINT " THIS CHICKEN * LIVES IN A MAZE WHERE IT THINKS IT IS SAFE FROM THE FOX... PRINT
PRINT "BUT SOMEBODY HAS LEFT THE DOOR OPEN AND THE FOX HAS GOT IN."
PRINT
PRINT "THE CHICKEN/S ONLY CHANCE NOW IS TO SLIP OUT WHEN THE FOX IS LOOKING SOMEWHERE ELSE, BUT THE FOX IS VERY FAST AND THE CHICKEN IS NOT SO CLEVER."

PRINT

PRINT "YOU CAN GET THE CHICKEN OUT BY
GUIDING IT WITH THE ARROWS ON KEYS 5 TO 9. IF THE CHICKEN IS IN GRAVE DANGER IT CAN FLY A SHORT DISTANCE INSIDE THE MAZE, BUT IT COULD LAND ANYWHERE."
PRINT
155 PRINT "HIT NEWLINE FOR MORE."
157 INPUT U\$
60 CLS
165 PRINT " THE CHICKEN CAN FLY ONLY A FEW TIMES
IN EACH RUN. YOU CAN MAKE IT FLY BY HITTING
F ${ }^{\prime \prime}$
167 PRINT
170 PRINT " YOU GET TEN RUNS IN EACH MAZE AND
THEN A NEW MAZE IS DRAWN. ALL THE MAZES ARE
DIFFERENT.:
173 PRINT
Comments

1 Leave 210 characters after REM to put the machine code in.

15 . . or use PAUSE

20 A very short delay
21 Run the game in machine code.
40 If $\mathrm{C}=40$ the fox eats the chicken.
50 If $\mathrm{C}=50$ the chicken escapes
60 If $\mathrm{C}=60$ the chicken flies.
65 JP is a flag used to RETURN in SUB 1700
67 JPNO counts the number of times the chicken flies.
68 POKE disables "F" key.
76 It is easiest to copy this off the machine code listing given separately. A\$ can be broken into as many sections (as at line 77) as you find convenient for entry.

Once you have got all this RUN without bugs, you can delete lines 76 to 88 before you save the final version. The machine code wil now be safe in the REM statement in line 1. You can see this if you LIST.

85 Loads the machine code in A\$ into the REM statement.
90 Sets up arrays. Z is used to draw the maze.
$95 \quad T$ is used to draw the maze.
97 M is the series of maze nodes in the order drawn.
190 Amend these instructions and the corresponding lines below to suit yourself.

220 S must be a line which says GOTO 21. The further down the listing it is, the slower will be the game.

1205 To watch the maze being drawn, put in 1206 SLOW.
121231 reverse spaces

1220 Set up a random starting point for the maze.
1310 Explore the four directions possible from the current node of the maze.

1350 If it is possible to move in more than one direction in drawing the next node of the maze, a random possible direction is selected and drawn.

1360 If only one new direction is available, this is drawn. If no new direction, then backtrack.

1400 Go back through the maze as drawn, using the M array. until a node is found where a new direction can be drawn. If no such node is found, ($\mathrm{M}=1$), then maze is complete.

1510

2020

Find an open space on the left side of the maze, and put the chicken in it.

Find an open space on the right side of the maze, and put the fox in it.

Draw an open space leading out of the maze beside the fox, and a door outside.

Put the fox position in the machine code variables.
Select a direction for the fox to turn.
Change the machine code reference array accordingly.
Put the chicken position in the machine code variables.
Reset flag
or PAUSE
Clear the fox and chicken positions.
Put them back at the starting postions.

Repair the top line of the maze.

2050
2065
2067
2070
2080
3100
Start again.

MACHINE CODE VARIABLES

" Q " = direction of last fox move
"FX $-33^{\prime \prime}=$ address of square above fox position.
REFERENCE ARRAY for relative directions of fox move, set up (arbitrarily) for a right-turning fox.
"
"
"CK - 33" = address of square above chicken position. start of program.

In addition to these, the machine code program is changed during the BASIC program at section 21; the line CMP 47,JRZ
73 (FE 2F 2849) is replaced by NOP NOP NOP NOP (OO 00 00 OO) to disable the JUMP, after a preset number of jumps have been executed.

MACHINE CODE LISTING

1	LDA, (16514)	$3 A 8240$
2	LDHL, 16518	218640
3	$\mathrm{CP}(\mathrm{HL})$	BE
4	JRZ,03	2803
5	INC HL	23
	JR, -6	18 FA
6	DECHL	2 B

7	LDB,H:LDC,L	$444 D$
8	LDHL(16515)	$2 A 8340$
9	LDA, (BC)	0 OA
	PUSH BC	C5
10	LDC, A	$4 F$
	LDB,0	0600
	ADD HL,BC	09
11	LDA,(HL)	$7 E$
	CPO	FE 00
	JRZ. 8	2808

MOVE THE FOX

The number " Q " corresponding to the last fox move.

The first address to be examined in the reference array

If $\mathrm{A}=$ datun in HL, then JUMP to the next stage at 6 .
Else increment HL. and repeat till successful.
Decrement HL (because we start looking to the right or left of the last fox move) and put it in BC.

The address of the square above the fox (FX - 33).

Get the contents the reference address from 7 and stack the address.
Put the contents back into BC and add to HL. This is the address of the next square to be searched adjacent to the fox.

Search it.

If zero, there is an open space; jump to 14.

JRZ, 124
FE 17
287 C
13 POP BC C1
INC BC 03
JR, - 2218 EA
14 LD(HL). $8 \quad 3608$ PUSH HL E5

15 ADD A.O C6 00 SBC HL,BC ED 42
LDB, 0
LDC. 33
0600
ADD HL, BC
OE 21
LD(HL), 0
09
3600

16 POP HL
ADD A. 0
E1
C6 00
LD(16515), HL

17 POP BC LDA, (BC)
LD(16514), A
OA
328240

If 23, there is a chicken: goto CATCH.

ELSE get the old reference back,
increment it and repeat
from 8 till successful.
Poke 8 to the new fox position and stack the position.

Change H L back to the old fox address (FX - 33); add 33 to get the true address and poke 0 to it.

Get the new fox address back, subtract 33 to get the new
" $\mathrm{FX}-33$ " and put it in $16515 / 6$ for the next time round.

Put the contents of the reference address into 16514 to give the new " Q " (see 1)

21 LDA, 32:JR 10 3E 2018 OA Depending on the result of 20 , LDA 66 :JR 8 LDA, 0 :JR 2 LDA, 34

22 LDHL(16524) PUSH HL LDC,A:LDB, 0 ADD HL, BC

23 LDA,(HL) CP O:JRZ 7 POP HL:JR 17
$24 \mathrm{LD}(\mathrm{HL}), 23$

25 LDB,0:LDC, 33 ADD A,O:SBC HL,BC
LD(16524), HL
26 POP HL
ADD HL, BC
LD(HL), 0

27 LDB, 0:LDC, 20 RET

28 ADD A.O:SBC HL,BC
LDB,0:LDC, 33 ADD HL,BC LD(HL), O:POP BC
LDB, O:LDC, 40 RET

29 POP HL
LDB, O:LDC, 50 RET

30 LD HL(16524) LDB, O:LDC. 33 ADD HL, BC LD(HL), 0 LDC, 60 RET

Get back the old "CK-33"; add 33 to give CK and poke 0 to blank the old chicken position.

RETURN

0600 OE 14 The game continues; put the
C9 line number (20) in BC and return.

CATCH
C6 00 ED 42 As 15 ; fox moves onto chicken.
0600 OE 21 Then clear stack, put 40 in BC 09 and return.

3600 C 1
0600 OE 28
C9

E1 Clear the stack. Put 50 in BC 0600 OE 32 and return.

JUMP 2A 8C $40 \quad$ Get "CK $-33^{\prime \prime}$; add 33 and
06 OO OE 21 blank CK with O. Put 60 in BC 09
3600
OE 3C
C9

Adding a keyboard to the spectrum

Stephen Adams looks at the electronics beneath the $\mathbf{Z X}$ keyboards, and tells you how to add an extension keyboard of your own.

The three ZX computers produced by Sinclair - the ZX80, ZX81 and the ZX Spectrum all use the same type of keyboard. The method of get ting information into the three machines is also the same, so I will only go over the Spectrum Keyboard pointing out the differences between the various machines.

The keyboard itself is made up of three layers of plastic. The top layer is coated on the inside with metal strips in a grid pattern which go horizontally under five keys. Each set of five keys has a different metal strip running under it. For example, keys 1 5 have one metal strip running under all the keys. The bottom plastic sheet has a grid of vertical metal lines running under four keys.

This metal grid runs under two sets of keys one on each side of the keyboard. Keys X-D-E-3 are connected to the same strip as M-K-1-8. The middle sheet only contains a set of forty holes, one under each key, so that when a key is pressed the upper metal strip can touch the lower metal strip. This forms an electrical contact switch between the two grids. Which wire of top grid is connected to which wire of the bottom grid is determined by the key pressed.

By putting voltage on each of the eight top wires in the metal grid and by testing each one of the wires on the bottom grid we can tell which key has been pressed. Every key has a unique combination of one top grid wire (address line) and one bottom grid wire (data line).

The main difference between the $\mathrm{ZX80} / 81$ and the Spectrum is that the keys on the Spectrum have been covered with a flexible rubber sheet
which has key tops moulded on to it.

This sheet is suspended over the keys so that it flexes when a key top is pushed down giving a much needed feel to the keys which the ZX80/81 did not have.

Such is the importance of having 'feel' on the keyboatd of a ZX computer (which can increase the speed at which information can be typed in by up to 50%) that many people have fitted an extra keyboard to replace the one that Sinclair provides.

This extra keyboard is usually made up of forty keyswitches which are laid out in the same pattern as Sinclair's keyboard. Each keyswitch has wires which are joined together only when the key has been pressed down, so they act just like the keys on the Sinclair keyboard.

The difference is that these keys can be pushed down up to half an inch and can therefore be felt moving under the fingers. This movement or 'feel' allows you to release the key as soon as it has reached the bottom of the
key's movement and go on to the next key without having to check whether the key was registering on the computer.

It was very difficult to do this on the $\mathrm{ZX80/81}$ as the downwards movement was only 0.1 inch and consequently many people kept their fingers longer on the keys than necessary.

With the ZX Spectrum this has improved, but I think that many people would still like a proper moving keyboard for two reasons. One, so that the keys

five) is taken to two lines of keys, the outermost keys are connected together (Caps Shift-A-Q-1-0-P-ENTER-SPACE).

ZX80 and ZX81 users will have SHIFT instead of CAPS SHIFT and NEWLINE instead of ENTER on their keyboards. The next vertical line of keys on the far right hand side is connected to the next line of keys on the left hand side. This ends up with the two middle vertical rows being joined together.

On the ZX Spectrum, the symbol shift key can either be moved to the position shown in Fig. 1 or an extra key provided there. Both should be wired as shown.

The best keys to use are those with clear plastic tops as the labels for the keys can be put underneath them. If you haven't
got any covers then paint out the tops of the keys with white paint and using various coloured inks, write the functions on the keys. Spectrum users will have quite a bit to do as there can be up to 6 functions to each key.

Connecting it up to the computer.

To make it easy to identify the connections of the 13 wires used on each computer, I have labelled the wires A-H for the address wires and 0-4 for the data wires. See Fig. 4 for the connections to your computer.

All the connections should be made to the underside of the keyboard sockets or in the case of the ZX80 directly to the printed circuit board as this allows you to use the original keyboard as well.

Slot mac

Catch one－armed bandit fever with thi 7K program for the 16K ZX81 written b Adam Waring and Mike Cleverley of Hul

SLOT MACHINE uses a flashy machine code routine to reverse the display．It is called during the introduction，winning and losing routines．

The object of this game is to win a grand total of $£ 50$ ．This is achieved by gambling on the one－armed bandit（see lines 40
to 80 ）．It costs $£ 1$ per go，and you win $£ 5$ for getting two numbers the same，$£ 15$ for get－ ting three the same．

The program has RESPIN and NUDGE routines．

This is the routine to put the machine code into the REM statement．


```
    10 INPUT
    20 LET A$=...
    30 IF A$=... THEN INPUT A$
    40 IF A$="E" THEN STOF
    50 POKE }\times,16*CODE A事+CODE A变(2
) =476
EO LET K=N+3
```



```
80 GOTO %0
```

After you＇ve entered that，run it and input the following：

Line 1 should now look like this：

```
    1 REM E&FND=##F? SFUE TAN LEN
37, FEUSEE
```

Once it does，enter as a direct command POKE 16510，0

Then，enter the rest of the program：

[^0]
A

7
315 IF INKEY事 $6>$ "Y" THEN GOTO ЗO
$\begin{array}{ll}320 & \text { FOR } N=1, T O, 20 \\ 324 & \text { LET } A(x+1) \\ 32 & 20 \\ \text { (}\end{array}$

326
FOKE F
325
NEXT
350 GOTO 4000
$32 S$ NEXT N+160+x, $4(x+13 / 2)+2 S$
350 GOTO 4000

42 LET $5=\frac{1}{2}+1$ (FND $+4+2$)

NUOGES:
450 FOR $N=2 T 0.3$
450 IF INKEY $\$=0^{\circ}$ THEN GOTO 400
0
ATE IF INKEY串く"1" OR INKEY字?"3"
THEN GOTO 460
480 LET $\mathrm{B}=\mathrm{CODE}$ INKEY $\$-28$
490 LET $A(B)=A(B)-2$

OO5U 15 3000
RESERIN？
307 PRINT AT $8, x ; "$ ．a

＋

495 IF $A(B)$（O THEN LET $A(E)=$ S 500 PRINT AT 5,$1 ; A(1) ; T A E \quad 3 ;$ A（E 3 TAB 5；（3）
510 NEXT N
520 GOTO 4000

$\begin{array}{ll}2012 & \text { REH } \\ 2050 & \text { PRINT } \\ 2000 & \text { PRINT }\end{array}$ 21
21
21
2 ive +10
red end 215 2185 219 UNE
2205 FOR N＝2

2215 PRTNT AT $\frac{1}{2}=$ NiAT

2

23
20
23
2311 REM
2312 REM E
2
2
CNO PRI惊
OF ARMED
2370 PRINT＂YOU RRE GIUEN IS TO
START OFF＂＂UTTH EACH SPIN OQS
2380 PRINT＂UITH．EACH SPIN COST
S．Yi．YOU SPIN BY PRESSING
こЗЭ゚○ PRINT＂GETTING \cong REELS THE SRME WINS YOUSS．ZETTING 3 TH
 YOU MAY GETA RESPIN．THESE ARE FREE，AND＂ 2410 PRINT＂THE FLASHING BUTTON INDICATES UHICH REEL MAY EE RE SPUN YOU 2420 PRINT＂RESPIN BY PRESSINGT HE＂．．Y＇．．．KEY，IF YOU DO NOT WISH TO FEEPIN＂＂THEN PRESS THE＂．＂N＂．． KEY．
2431 PRINT
2432 PRINT
233 PRINT
2435
24
NUE．
2435 36
2437 CLS
2440 PRINT＂NUDGES RRE ALSO AURI LABLE AT RANDOM STRGES THROUG HOUTE THE．

2450 PRINT "GAME YOU WILL HAUE
FROM 2 TO 5 NUDGES AT ATIME YO 1) PRESS THE' 2460 PRINT "COLUMN NUMBER, ${ }^{2} \cdot{ }^{\prime} 1$.". PROPIATE OR COUHN.: TO NUDGE THE A 2470 PRINT "TO STOP NUDGING, PRE 55 "0"
2480
$108 R$ 24BQ PRTNT "THE GAME MAY EE TERM
INRTED PT ... PME IIME EY PRESITHG 2483 PRINT
2484 PRINT

2495 IF INKEY事く $\rangle^{\circ} \mathrm{C}$ " THEN GOTO 24
95
2500 RETURN

4010 GOSUE 3000
4050 LET $\mathrm{A}_{2}=\mathrm{A}-1$
4060 LET $A(4)=A(1)$
4100 FOR $N=1$ TO ${ }^{3}$
4110 IF $A(N)=A(N+1)$ THEN GOSLB 4 500

COBRA 1000 THE COMPLETE BUSINESS SYSTEM FOR THE ZX81

The Cobra computer system allows you to expand your Sinclair ZX81 into a powerful and efficient computer for the small business.

- Accommodates a full range of business hardware
- Capacity for up to 9-12 boards
- PCB slide guide systems ensure total stability
- All add-on hardware comes complete with leads and sockets - no soldering of drilling necessary
- Durable, lightweight metal computer case
- Fully professional keyboard - with space bar

HIGH QUALITY, FULLY BUILT BASIC MODEL £79.95 + VAT

Expand your Cobra with a comprehensive choice of add-ons:

- Interfaces - Tape drive unit - Upper and lower case character board • High resolution graphics - Input/output ports - Light pen - Colour Modulator.

THE CHEAPEST INTERFACES ON THE MARKET
 RS 232 Interface

At last a high quality 232C interface to allow you to connect your ZX81 to any 232C printer from the cheapest dot matrix to the most expensive daisy wheel. Look at these features:

- Baud rate variable from 110 to 9600 with software control
- Upper and lower case printout
- Up to 120 haracters per line
- Small and compact - fits on to the back of your ZX like a RAM pack
- Uses the ZX power supply
- Output via a small 3 pin jack.

Price only £26 + VAT
 Centronics Interface

Allows you to connect the ZX to any Centronics printer. Has similar features to the 232C interface one exception is that output is via a 24 way socket at the back of the unit.

Price only £26 + VAT

Coming Soon: ZX81 SPECTRUM MICRODRIVE INTERFACE
Connect the Sinclair to the new Spectrum Microdrive! As soon as the microdrive is available we will be developing an interface for it to be connected to your ZX.
Interfaces will also be available to adapt this example of modern micro engineering for use with Apple and Pet computers.
This is just one of the future developments by Cobta Technology.

MICROLINE A PRINTER

- Print speed 120 characters per second \bullet Bidirectional printing $\bullet 9 \times 7$ dot matrix \bullet 5-10 and 6.5 characters per inch $\bullet 8$ or 10 lines per inch \bullet Vertical tabulation and form feed \bullet Form length user selectable - Upper and lower case • Block graphics • 1 line print buffer • 80 characters per line

Price $£ 281.75$ inclusive of VAT

COBRA TECHNOLOGY LIMITED 378 Caledonian Road, Islington, London N1 1DY Please send SAE for brochure

Microprocessors
 and bus systems

We look at the most commonly used microprocessors, and delve into the mysteries of the S-100 bus.

The most commonly used microprocessor chips in the hobby market are the 8080, Z-80, 2650, SC/MP and 6502. Other variants can be easily spotted the 8085 is very similar to the 8080 but with certain changes. The ZX machines are built around the Z-80A chip, a development of the Z-80.

Which is the best one? This is a difficult question - it's like high-level languages lof which there are many different types and variants), people who are used to a particular one will prefer it to any other.

Long arguments develop between programmers over the good and bad points of each language. It's the same way with processors.

The 8080 is probably the processor with the most 'software support' - it has the most programs written for it. The Z-80 can run any program written for the 8080, as well as some which the 8080 cannot.

The SC/MP has the advantage that it needs practically no 'support chips' - it will more or less stand alone and is thus ideal for many 'dedicated' applications, such as doorbells, alarms, etc.

The major differences between the processors in terms of programming are the instruction sets and the number of registers.

The instruction set of a processor is a list of all of the different arithmetic and logical operations it can perform - like the number of keys on a calculator. The registers in the processors are the same as calculator memories - the more, the better.

The 8080 instruction set is about the same level of complexity as the 2650 and the 6502 . This is adequate for most
applications.
The SC/MP has a rather limited instruction set and relies on its ease of application for its appeal.

The Z-80 instruction set includes the 8080 set - and them somel It also has twice the then some! It also has twice the though, it is usually felt that the 8080 level of complexity is sufficient for the beginner.

S-100 and all that

What exactly is the $\mathrm{S}-100$ bus? Or any bus for that matter? No, they're nothing to do with public transport. The word 'bus' is short for 'omnibus' (literally: 'for all'). Basically, it's a method of interconnecting parts of a computer system so that they can communicate with each other.

It takes the form of a 'backplane' or 'mother board' which holds several edge con-
nectors. Printed circuit boards can be plugged into these, one edge of the board being covered in gold-plated strips right up to its edge. Contacts on the edge connector make electrical contact with these strips. The S-100 bus system uses doublesided boards with 50 strips per side (thus the 100 in S-1001).

Each board - one of which will be the microprocessor board, holding the micro chip itself plus all the other 'support' chips necessary to get the thing to work, such as oscillators and buffers etc - has some outputs and some inputs which are connected to the bus in a standard configuration. There are sixteen lines of the bus which carry information on 'addresses'. This is how a position in memory is defined - by a sixteen digit binary number.

When the microprocessor wants to find out what's at a
particular address on the board which carries the memory, it puts that address on the sixteen address lines, put out a request on some of the other lines of the bus and the memory board looks up the required information and puts it onto the 'data' section of the bus. The microprocessor board then reads the data from the bus.

Other buses have differing numbers of lines and the positions of the data and address lines are also different but they work in essentially the same manner. Unfortunately, it is difficult to connect a board intended for one bus system to a board intended for another.

For this reason, each manufacturer either uses his own bus structure, as is the case with Sinclair, or sees the light and uses the S-100, which is about as close to a standard as the hobby computer field has.

Fig. 1. Standard S100 cards are $10^{\prime \prime}$ by a nominal $5.3^{\prime \prime}$. Some manufacturers change the height depending on circuit requirements. Edge connector spacing is $0.125^{\prime \prime}$, offset to prevent backward insertion of a board.

Ready,

In the first issue of ZX Computing, Henry Budgett and Tim Hartnell discussed the standard benchmark tests used to test the speed of various functions on microcomputers. Stephen Tyler and Mark Dulling of Kingsbridge in Devon decided to get out their stopwatches, and put a number of popular computers through their paces, to see how they measured up.

We were interested in the benchmark tests for testing the ZX81's speed in the Summer issue of ZX Computing, and
have run the following tests, including 33 of our own additional tests on different types of computers.

We did all timings in minutes and seconds, to two decimal places, and used the maximum abbreviation possible on the
micro being used (such as N . for NEXT on the Atom and the BBC Micro).

COMPETITION

WIN A ZX PRINTER

Win a $\mathbf{Z X}$ printer, and a complete set of Psion/ZX81 software!

We're looking for six clever programmers - and we've got great prizes to give the winners: a ZX printer for first prize, and five sets of Psion software for the ZX81 for the runners-up.

All you have to do is write a clever program - in BASIC -which fits within 1 K on the ZX81, and has something to do with trains! It doesn't matter if your program ties damsels in distress to disused tracks in

Southern Region, or helps lost and weary travellers find their way on the Central Line of the Underground, or whatever but the program must tie in, in some way, with trains.
Your entry must be as a clear listing (printer-dumped if you can convince someone to lend you one), or splendidly handwritten. No cassettes, please. This competition is not open to permanent contributors to this
magazine, or any other of the computing periodicals. We'll be printing the best entries in the next issue of ZX Computing, when we'll also be announcing the lucky winners. The entered program must not have been previously published, must be your own original work, and must not have been submitted for publication to any periodical. Entry to the competition will be construed as permission to publish the program. No entries can be returned.

This competition closes with the last mail on October 11, 1982. No correspondence regarding this competition will be entered into, and - as they say in the classics - the judges decision will be final.

Send your entry to: $Z X$ Printer Competition, ZX Computing, Argus Specialist Publications, 145 Charing Cross Road, London WC2.

FROM AFDEC ZX81 IMPROVERS

ZX-PANDA

16K-byte EXPANDABLE RAM for ZX81

- 16384 bytes of extra random access memory (16K)
- Expandable to 32 K with easily fitted internal plug-in module -
- Simply plugs into rear expansion port of the ZX81 computer
- No additional power supply required
- LED power indicator
- Attractive black custom made case contoured for stability
- Compact size ($76 \times 91 \times 28 \mathrm{~mm}$ approx.)
- Compatible with most expansion systems
- Full 1 year parts \& labour guarantee
- Exceptionally low fully inclusive prices

$$
\text { ZX-Panda } 16 \mathrm{~K} \text { Expandable Ram Pack } £ 25.00
$$

ZX-Panda 16 K Expansion Ram Module $£ 19.95$
OR The two together - Giant Panda 32K Ram Pack £39.95

- Prices include VAT and Delivery • Delivery from Stock • The only available 16 K Ram Pack that is directly expandable to 32 K using a plug-in module that fits neatly inside the original Ram Pack case •

4

KEYBOARD NOW READY

A professional quality keyboard for your ZX81. Only $£ 25.00$ built, tested, cased Including VAT and Delivery.

- Easily fitted - Repeat facility - High quality engraved keys - Fully tested, cased and guaranteed - Long life keyswitch 10^{7} operations min - Tactile feel Cheques/PO please to
AFDEC ELECTRONICS LTD, 318 KEMPSHOTT LANE, BASINGSTOKE, HANTS RG22 5LT
Please supply:

> ZXPanda 16 K Expandable Ram Packs
> $£ 25.00$
> ZXPanda 16 K Expander to 32K for above $\mathbf{£ 1 9 . 9 5}$
> Giant Panda 32K Ram Pack $\quad \mathbf{£ 3 9 . 9 5}$
> Professional Keyboards
> $£ 25.00$
> TOTAL £

NAME
ADDRESS \qquad
\qquad
\qquad
\qquad

In this issue, our hardware reviewers look at a system which allows your ZX81 to listen, a ZX81 sound maker or three and a device to ensure that you don't lose a program when the power fails.
ZON Sound Unit
A wide range of sound effects can be added to your $\mathrm{ZX}-81$ with the ZON X-81 Sound Unit now available from BI-PAK.
The unit is based on a three-channel-plus-noise sound chip, and is so designed that the pitches and volumes of the three channels and the overall attach/decay envelope can be
controlled by simple BASIC statements. By this means, piano, organ, bells, helicopters, lasers and explosions can be simulated and easily added to existing programs.

ZON X-81 is completely self contained in a neat black plastic case with loudspeaker and manual volume control (in addition to programmed volume), and simply plugs in between the rear of the $\mathrm{ZX}-81$ and its RAM pack and/or printer (if fitted). No dismantling, wiring, soldering, batteries, power supplies or leads are required.
Instructions take you through the operation of the unit step by step and include a
number of example program of stored at a time. useful sound. It is available from BI-PAK Semiconductors, P.O. Box 6, Ware, Herts, WARE $3442 / 3182$. Price $£ 25.95$, including postage and V.A.T.
Big Ears
The 'Big Ear's speech recognition system, which costs $£ 49$, plus VAT, including p\&p, consists of a microphone, preamplifier, analogue frequency filters and digital interface, complete with software. Words are stored as voice patterns which the system learns from repetition by the user.

Ten or so words can be

The computer then checks each word spoken against its word bank, and assigns a percentage to each word regarding its chance of being the word spoken. It assumes the word gaining the highest score is the spoken word, and responds accordingly.

It is available from William Stuart Systems, Dower House, Herongate, Brentwood, Essex, CM13 3SD (0277-810244).
Protecting that program
The 'software protection unit', made by Microbyte of Lichfield,
looks like being a partial answer to all those horrifying moments when 8 K worth of carefully typed in programs suddenly vanishes.
The software protection unit has a socket to take the mains power unit jack plug from your ZX81 mains transformer, and the plug on the unit then hooks into the ZX 81 .
If you unscrew the four screws on the lid of the unit, you'll see two battery containers, which hold a total of six batteries. These are the secret of the unit, which is designed to take over if the power fails.
When we tried it, we found it worked exactly as described. We didn't try the 'how long will a program last' test, but take the manufacturer's word that
with a $\mathrm{ZX8} 1$ alone, a program will stay intact for three hours, and with the 16 K attached, about an hour and a half.

You're cautioned to always remove the power jack plug on the ZX81 after turning off the mains supply, or the batteries will think there has been a power supply, and wear themselves out keeping the ' 81 going. The batteries are, of course, only intended for emergency use. Excessively used batteries are signalled by video character deformation, and loss of sync, although at this stage the RAM contents are not lost.

The unit costs $£ 8.60$ and is available from Microbyte, 19 Worcester Close, Lichfield, Staffs, (05432) 28556.

The Microbyte Software Protection Unit

Making Music

If you want to add sound to your ZX81 the Bolton Electronics Music Chip may be of interest to you.

This is a GIAY-3-8910 sound generator chip interfaced to the ZX81. The chip is mounted one printed circuit board with all the necessary interfacing components.
The p.c.b. plugs in to the rear of the computer.
The computer's edge conector is reproduced behind the p.c.b. to enable RAM packs and printers to be connected.

The music chip is a fairly tricky little device. It provides three separate audio channels and each of these can be programmed with separate frequencies and volumes.

A programmable noise generator can also be switched on to the three channels and a programmable envelope generator can be set up to control the volume of the three channels, so you can see there's a fair degree of flexibility built in to this particular product.
It also includes an on-board audio amplifier which has enough output for a small loudspeaker (which you don't get with the kit).
The amplifier input and output connections are brought to the output connector so that any or all of the audio channels can be amplified by the on board amplifier or they can be fed by an external amplifier.
Because you have the three

separate channels you could, if you felt particularly dextrous, wire the output up for stereo so, say, channel 1 came out of the left speaker, channel 2 came out of the right and channel 3 was mixed equally between the
right and left speakers.
The unit also provides two 8 byte ports which can be controlled by the computer. They could, for instance, read an external keyboard or paddles. Each chip is fairly easy to pro-
gram by PEEKS and POKES. Full instructions are provided.
The chip is available for $£ 16.90$, including p and p . from Bolton Electronics, 44 Newland Drive, Bolton BL5 1DP, Lancs. (Bolton 64772).

Hardware

Get a load of this

Fulcrum Products, who produced the 'ZX81 Keyboard Bleeper' have developed a new product, the 'ZX Loading Aid'. It is designed so that you can set the cassette player volume control at just the right setting so that the signal the computer receives is neither too weak nor too strong. It is designed to ensure that even tapes made on 'foreign' cassette players will load first time.
The Loading Aid is based on a circuit designed by Charles Rowbotham, which detects and shows the signal level on two LED's, enabling you to distinguish between quiet passages, voice introductions, the introductory buzz and the main body of the program. You can also actually see drop-outs in the tape.
The Loading Aid is a small black metal box which houses the circuit, two sockets of the size of those on the ZX81, and two jack plugs. As well as this, there is a red and a green Light Emitting Diode. You simply fit the Loading Aid between your cassette recorder plus power supply and the $\mathrm{ZX81}$. When the tape is playing, you adjust the volume control so that the intensity of the green LED matches that of the red one. The cassette player is then at the optimum setting for that particular taped program. The ZX81 Loading Aid is $£ 9.95$, in cluding p and p, and VAT, and is also available for the ZX80, or Spectrum. Specify which computer you have - Fulcrum Products, 'Hillside', Steep Lane, Findon, Worthing, West Sussex, BN14 OUF (090 671) 2750.

Fulcrum Products have also announced a new improved version of their Bleeper. When any of the normal or shifted keys is pressed, the unit gives a distinctive 'bleep'. That is, all 210 characters give a bleep. The unit is $£ 8.95$ which includes p \& p and VAT.
The module is made up of a printed circuit board which fits into the $\mathrm{ZX81}$ 1, so there are no trailing wires outside the case. Both ZX81 keyboard tails simp-

ly plug into the module. Fulcrum provide two flexible ribbon cables to complete the connection back to the $\mathrm{ZX81}$ pcb.

Features of this unit include the fact that no soldering is required; the model is small
enough to fit under the keyboard; you can get an optional on/off switch for $£ 1$ extra; and the bleeper can also be used in conjunction with many of the full-size keyboards presently on the market for the ZX81.

William Stuart-Bruges talks to his attentive ZX81 through the 'Big Ears' speech recognition system

The Yellow $2 x$ of Eighty

As you can see, the music information is held within the string, AS, in line 50 which is checked element by element. Lines 160 and 310 strip the string down, character by character.

Note that there must be a semi-colon after the word PRINT in line 110. Lines 130 to 143 are just CLS.

Line 170 terminates, and lists the program after you've finished.

You can easily adapt this program to play other splendid melodies, by changing the contents of $\mathrm{A} \$$. We'd be very interested to see any other samples of music you can create.

PROGRAM LISTING

10 LET $\mathrm{A}=17200$
20 POKE A, 237
30 POKE A, 65
40 POKE A, 201
50 LET AS = "R4R311114S46868CS8
F88864S146664S6 411114 S6868CS8
F888644146346S8 R8R833333S33444 6S8
F88864S146664S6 R4R311114446 868CS8
RFRF88864S1R4R46346S8"
60 LET B $=\operatorname{CODE}(\mathrm{A} \$)-28$
70 IF $\mathrm{B}=-28$ THEN GOTO 200
80 IF $\mathrm{B}>26$ THEN GOTO 300
90 LET $\mathrm{E}=2$
100 FOR C $=1$ TO E* $34 *(22-$ B $) /(45-$ B $)$
$110 \operatorname{IF} \operatorname{USR}(A)=1$ THEN PRINT ;
120 GOTO 145 - B
130 CLS
131 CLS
132 CLS
133 CLS
134 CLS
135 CLS
136 CLS
137 CLS
138 CLS
139 CLS
140 CLS
141 CLS
142 CLS
143 CLS
150 NEXT C
160 LET A $\$=$ TL\$(A \$)
170 IF A $\$={ }^{\prime} \cdot{ }^{\prime}$ THEN LIST
180 GOTO 60
200 FOR D $=1$ TO 100
210 NEXT D
220 GOTO 160

> From Vaxjo, in Sweden, Lars Johansson, sent us this great program to play 'The Yellow Rose of Texas' on a ZX80.

300 LET E $=(\mathrm{B}-27) * 3+1$
310 LET A $\$=$ TL\$ $(A \$)$
320 LET B $=\operatorname{CODE}(\mathrm{AS})-28$
330 GOTO 100

This program will help you find your way through a long $\mathrm{ZX80}$ program. To start it, you just type in RUN 9900. The ZX80 will then ask for the string it is to search for.
You type in the string to search (which can include shifted keys), or tokens (which you must prefix with a $£$ sign).

Here's an example. If you wanted to find 'POKE PEEK (A)...', you'd just answer ' $£$ PEEK (A) '. The program will then list the first appearance of the search string. To continue the search to find the next appearance of the string, enter GOTO G (that is, press the G key twice), and then NEWLINE. When you reach a NOT FOUND, GOTO G will start the next search at the top (first line).

You can stop the program by entering ' $\$ \$$ '
As a test, you might like to get the program to list all the TL\$ in itself.

9900 DIM F(20)
9903 LET $P=16426$

9904 LET B $=\operatorname{PEEK}(16393)+256+\operatorname{PEEK}(16392)$
9905 PRINT "ENTER STRING TO SEARCH."
9907 INPUT F\$
9908 IF F $\$=" \$ \$ "$ THEN STOP
9909 IF F ${ }^{\prime \prime}$ "' THEN GOTO 9920
9910 LET $P=16426$
9911 LET L=0
9912 IFF§ $=\cdots$ THEN GOTO 9920
9913 LET L $=\mathrm{L}+1$
9914 LET $F(L)=\operatorname{CODE}(\mathrm{F} \$)$
9915 IF NOT $F(L)=12$ THEN GOTO 9918
9916 LET $\mathrm{F} \$=\mathrm{TL} \$(\mathrm{~F} \$)$
9917 LET $F(L)=\operatorname{CODE}(F \$)+192$
9918 LET $\mathrm{F} \$=$ TL $\$(\mathrm{~F} \$)$
9919 IFL < 20 THEN GOTO 9912
9920 IF $\mathrm{L}=0$ THEN GOTO 9907
9930 FOR X $=1$ TOL
9931 IF NOT PEEK $(\mathrm{P}+\mathrm{X}-1)=\mathrm{F}(\mathrm{X})$ THEN GOTO 9940
9932 NEXT X
9933 LET $\mathrm{X}=\mathrm{P}$
9934 LET $X=X-1$
9935 IF NOT PEEK $(X)=118$ AND $X>16422$ THEN GOTO 9934
9936 LET $X=\operatorname{PEEK}(X+1) \times 256+\operatorname{PEEK}(X+2)$
9937 LET $\mathrm{P}=\mathrm{P}+1$
9938 LET G $=9930$
9939 LIST X
9940 LET $\mathrm{P}=\mathrm{P}+1$
9941 IF P < B THEN GOTO 9930
9942 CLS
9943 PRINT "'('";
9944 FOR X = 1 TOL
9945 PRINT CHR\$(F(X));
9946 NEXT X
9947 PRINT "INOT FOUND."
9948 PRINT
9949 GOTO 9903

NEW

 SPECTRUM

 SPECTRUM SOFTWARE

 SOFTWARE}

JACKPOT FRUIT MACHINE

Featuring holds, nudges and realistic hi. res symbols Colourful-just like the real thing!
Plus

SUBMARINE ATTACK

Destroy them before they destroy you Fantastic fast action fun Both games just $£ 4.95,48 \mathrm{~K}$ SPECTRUM.
Boldly Go where no Spectrum has gone before. in

SUPER SPACE MISSION

Incredibly fast machine code graphics. Dodge the swooping aliens and meteors. Fight exciting multi directional laser battles from your moving starship. Really exceptional graphics, seven skill levels, only £4.95 for 16 or 48 K SPECTRUM or 16 K ZX81.

MONSTER MINE

Escape from the depths of the legendary El Dorado mine by dodging the monsters and collecting the golden nuggets. Full machine code. Only $£ 4.95$ for 16 or 48 K SPECTRUM or 16 K ZX81.

Richard Shepherd Software

FREEPOST (No stamp required), Maidenhead, Berks SL6 5BY.

Promotion's the name of the game in

'SHIP OF THE LINE' - An adventurous management game.
Fearlessly battle your way up the ranks.. encounter enemy fleets. survive mutiny, fever and famine... endure fog, fire and thirst... then when you think you've done well.. rush home to Port for promotion! 16 K SPECTRUM $£ 4.95$ 48K SPECTRUM $£ 6.50$

MULTI FUNCTION CASH CONTROLLER

Takes care of your Home Budgeting, Bank Account, Standing Orders, Loan and Mortgage Repayments. Complete security ensured by secret password. A budgeting bargain for only $£ 10$.

'SHAKEN BUT NOT STIRRED!'

48 K SPECTRUM

A James Bond 007 Adventure.

Recover a stolen warhead from the lair of Dr . Death, but first follow the trail across continents, locate his secret island, encounter the steel fisted giant Paws, then find yourself in his underwater maze and hopefully find the missile...But It Doesn't End There!
Can you resist being 007 ? Only $£ 6.5048 \mathrm{~K}$ SPECTRUM

Make sure you get every issue of $Z X$ Computing Now bi-monthly!

Just $£ 11.50$ will ensure the next six issues will be lovingly wrapped and posted to you. Just fill in the form below, cut it out and send it with your cheque or postal order (made payable to ASP Ltd) to:-

ZX Computing Subscriptions
513 London Road,
Thornton Heath,
Surrey CR4 6AR

Alternatively you can pay by Access or Barclaycard in which case simply fill in your card number, sign the form and send it off. Do NOT send your card!

Make the most of your ZX computer with ZX Computing - Now bi-monthly!

Ground to Air Missile

From Cork in Ireland, Aidan Walsh and Kevin MacCarthy present G.A.M. for the 1K ZX81.

You have ten Ground to Air Missiles under your command. Your job is to destroy all the alien ships (which look suspiciously like letter Vs) before they land on earth and destroy it.

If they land the game is over, and the number of ships you destroyed is shown in the top left
hand corner of the screen.
If ' 1 ' key moves you left, ' O ' moves you right, and ' 2 ' moves you up thę screen. You must get the : + in front of the advancing Vs to stop them. The screen clears after each successtul hit, and at the end of the game.

Programming

Moving h the flow

If you're bogged down with a bug, a flowchart can help. Henry Budgett, editor of 'Computing Today', tells you how to go about it.

People who program generally tend to fall into one of two categories, those who use flowcharts and those who don't. I tend to write mine after the program and then correct the bugs, and I'm sure many of you do too!

The techniques of flowcharting are of great benefit to those who like to
tackle problems logically, they draw vast diagrams, test for all the possible quirks and then code up the results. The result of all this is usually a superb program, it never fails and is always late.

The rest of us write and debug our efforts as we key them in, end up with programs that work, fail occasionally and
are usually ready on time. In this article I hope to put across some of the ideas behind the writing of flowcharts and demonstrate their useful points.

The Simple Idea

A flowchart is defined as "A diagrammatic representation of
a series of events, usually in dicating the analysis or solutior of a problem"." This is simila to, but not quite the same as ar Algorithm, this is defined as " f defined process or set of rules for solving a given problem ${ }^{1}$."

One usually starts with ar algorithm, produces the flowchart and then codes the program. The simplest form of

Fig 5. Splitting the problem can often make life easier.
flowchart is shown in Fig. 1, it uses no special symbols, and is really an extended version of the basic algorithm.

Flowcharts usually contain lots of pretty little boxes which must mean something, and indeed they do. In Fig. 2 I have listed all the common types and their designated functions. This is only a small selection of the available symbols but for most purposes it will be quite adequate.

The Standard Use

Having taken a look at the available set of symbols we can now re-write our simple flowchart in acceptable form, this is shown in Fig. 3. For the actual task of converting it into a given language this will be quite sufficient, regardless of which language is to be used.

A problem of this staggering complexity doesn't really deserve a flowchart at all, and inueed most proficient amateur programmers are quite capable of coding up large programs
from a simple set of rules, or even the basic algorithm.

In Fig. 4 I have attempted to flowchart another everyday problem, that of running a bath. As can be quickly seen it will work but is by no means bugproof. Never mind, we'll sort them out later is the usual reply, in fact it's quite good enough to write a program from.

We will take a last look at this program flowchart before we move on - it can be rewritten into two parts, a Control section and a single subroutine section of the task as subroutines with their own flowcharts. One can quickly sort out complex problems, and even write and test the various routines on their own before fitting them into the complete program.

The Real World

Computers being what they are, logical, the previous attempts at flowcharting bear no relation to a true programmers flowchart.

A typical example of such a

Fig 6. A true program flowchart for a simple task.
beast can be seen in Fig. 6. The task is to produce a set of arithmetic tables for any given number between 1 and 12. The diagram shows all the steps needed and you should be able to follow it through on your own, there are comments!

The ideal of every programmer is to produce not only the ultimate bomb proof program but also to have it lavishly documented. This is the breakpoint between professional programs for a software house, or indeed a magazine for publication, and hopefully payment.

It is almost obligatory to include not only a flowchart but a complete description of just what it does. In a case such as this you will find that your first flowchart will be so scrawled on that you have to re-draw it and it is well worth investing in a stencil that gives the standard symbols.

It is also essential to keep a duplicate set of all the documentation for security, if you lodge a sealed set with the bank you have got a handy piece of evidence in case
anyone rips off your version of Pacman and starts selling it and not paying any royalties!

In Conclusion

If you are capable of determining the way you wish to solve any given problem, writing the algorithm, you are capable of producing a flowchart.

They are useful for debugg. ing programs but you will find that they soon become covered with modifications and have to be re-drawn.

Their most useful function is as a piece of documentation, how often do you remember how a program worked after six months, and as a means of testing out sections of a program such as subroutines.

Flowcharts are not essential as some people would have you believe but they do bridge the gap between successful programs and those which work.

References

${ }^{1}$ Both definitions are taken from The Dictionary of Data Processing from Newnes Butterworths so you can argue with them!

MICHAEL ORWIN'S ZX81 CASSETTES

THE BEST SOFTWARE (BY VARIOUS AUTHORS) AT LOW PRICES

QUOTES

Michael Orwin's is Cassette Two is very good value. It contains 10 stolid well designed games which work, offer plenty of variety and choice, and are fun." from the ZX Software review in Your Computer, May 82 issue
had your lnvaders/React cassette ... I was delighted with this first cassette
P. Rubython. London NWio
have been intending to write to you for some days lo say now much I enjdy the games on Cassette One which you supplied me with eartier this month

E H. London SW4
I previously bought your Cassette One and consider it to be good value for moneyr

Richard Aoss-Langley Managing Director Mine of information Ltd

CASSETTE 1

(eleven 1 k programs)
machine code.
React, Invaders. Phantom aliens. Mare of death Planet tander, Bouncing letters. Bug splat
Basic
I Ching, Mastermind, Robots, Basic Hangman PLUS Large screen versions of Invaders and Maze of Death. ready for when you get 16 t
Cassette One costs 5380

CASSETTE 2

Ten games in Basic for 16k ZX81
Cassette Two contains Reversi. Awar, Laser Bases Word Mastermind. Rectangles. Crash, Roulette Pontoan Penny Shoot and Gun Command Cassette Two costs es

CASSETTE 3

8 programs for 16k ZX81
starship trojan

Repair your Starship before disaster strikes Hazards include asphywiation, radiation, escaped biological specimens and plunging into a Supernova
STARTREK This version of the well known space adventure game teatures variable Kingon mobility, and graphic photon torpedo tracking PRINCESS OF KRAALAn adventure game BATTLE Strategy game for 1 to 4 players
KALABRIASz Worlds silliest card game, full of pointless complicated rules
CUBE Rubik Cube simulator, with lots of functions including Backstep
SECRET MESSAGES This message coding prozram is very txip qexi it
MARTIAN CRICKET A simple but addictive game (totally unlike English cricket) in machine code. The speed is varable. and its fop speed is very fast Cassette 3 costs 55

CASSETTE 4
8 games for 16 k

ZX-SCRAMBLE (machine code)

Bomb and shoot your way throught the fortified caves GUNFIGHT INVADERS Imachine code)
(machine code)

GALAXY INVADERS (machine code Fleets of swooping and diving alien craft SNAKEBITE (machine code) Eat the snake before it eats you. Variable speed (very last at top speed).
LIFE (machine code)
A 2×81 version of the well known game
D TIC-TAC-TOE (Basic)
played on a $4 \times 4 \times 4$ board. this is a game for the brain. if s very hard to beat the computer at it
7 of the 8 games are in machine code, because this is much taster than Basic (Some of these games were previously available from \perp Steadman) Cassette 4 costs CS
FUNGALOIDS (Machine code)

Recorded on quality cassettes, sent by first class post, from:
Michael Orwin, 26 Brownlow Road, Willesden, London NW10 9QL (mail order only please)

NEW softwares for NEW computer

ZX SPECTRUM ZX81

SOUND \& COLOUR ON ALL ZX SPECTRUM PROGRAMS SEA WAR: ($Z X-s p \mathbf{~} 6.00$ ZX81 $\mathbf{£ 5 . 0 0})$
Completely new designed game for one or two players. Attractive screen display and super control.
IQ GAME PACK I: ($7 \mathrm{X}-\mathrm{sp} £ 4.00,7 \times 81 £ 3.50$)
ADDER GAME $=(\mathrm{ZX}-\mathrm{sp} £ 5.00 . \mathrm{ZX81} £ 4.50)$
A new idea in which maths is involved in this fast action game.
Send s.a.e. for full details. Mail order only. All cheques and postal orders made payable to:

51 Elgin Street, Shelton, Stoke-on-Trent ST4 2RD

Please supply		
Game	ZX-sp	ZX-81
Sea War	- at $£ 7.00$	- at $£ 6.00$
10 Game Pack I.	- at $£ 4.00$	¢3.50
Adder	- at $£ 5.00$	- at $£ 4.50$
1 enclose $\mathbf{\&}$		for above tems
My address is.		

All prices include VAT and P\&P. U.K. delivery: Allow up to 28 days.

SOUND with ZX-81!

 MAKE AMAZING SOUND EFFECTS WITH YOUR ZX-81
£25.95 THE ZON X-81

incl p\&p \& VAT

- The ZON X-8I SOUND UNIT is completely self-contained and especially designed for use with the 2×-81 It just plugs in no dismantling or soldering
* No power pock, batteries, leads or other extros
- Manual Volume Control on panel - ample volume from built-in loudspeaker
- Standard $2 \mathrm{XX}-81-16 \mathrm{~K}$ Rampack or printer can be pluggedinto

* Huge range of possible sounds for games or Music Helicopters, Sci-Fi. Spoce Invaders, Explosions, Gun-shots Drums. Planes Lasers. Organs. Belts, funes. Chords etc or whatever you devisel
* Uses 3 -channel sound chip giving programme control of pitch volume of tones ond noise all with envelope control.
* Easily odded to existing gomes or programmes using o few simple BASIC lines
FULL instructions with many examples of how to obtain effects and the
programmes, supplied Fully Guaranteed

And what

 is your defence Defending the earth in three dimensions sounds pretty impressive. Thirteen-year-old Joseph Nicholson from Chilton tried out the latest offering from J K Greye Software.

The program loaded with no trouble, and after about four minutes the program auto-ran. Impressive instructions rolled up the screen telling me that I was the only space ship that the planet had and I must defend it to the last. Who, me? They must be joking!
When I bought this game I was under the impression that this was just an upmarket version of the usual defender games, the idea of 3D Defender hadn't really clicked in my mind. The screen in 3D Defender is what you would see if you were looking through the cockpit of the space craft. The aliens actually fly towards you in full 3D, getting larger as they get nearer. A few instruments appear on the screen as well: a radar, an altimeter, a proximity meter (how near you are to an alien space craft), the number of shields you have and your score.
After pressing newline the game began. The graphics was outstanding. After getting myself accustomed to the nonstandard movement keys (the game does not use the cursor keys to move, but the movement keys are arranged to stimulate joystick control. Once this has been mastered,
the game feels much more realistic) I decided to try and "save the planet from the marauding alien space craft' as the instructions for the cassette put it. This was nowhere near as easy as it seemed. Whenever I got near to the beggers they would either shoot their Plasmo at me and shoot me down or I would actually collide with one of their space craft instead of shooting it. Every now and again meteors would zoom across the screen and if you hit one of them one of your lives would be lost. After about one hour, yes, one hour!, I shot my first alien. 250 the score read, but that didn't stay there for long as everytime an alien lands on the earth 50 points is deducted from the score. My score was reduced to 0 in about 30 seconds! It took me almost another hour to really get the hang of it, this is certainly not an easy game. In the instructions for the cassette they told you how to alter the speed of the game, you and the aliens. I decided to change the speed of the aliens (slower of course!). You get out of the program by pressing the EDIT key (the break key has no effect). This proved rather difficult, as the
program recognised the SHIFT key as a key in its own right. I soon found that by pressing the 1 key (the key with EDIT written on it) without the shift depressed it worked perfectly. Inspection of the program revealed that the game was written almost completely in machine code with only 2 lines of BASIC. A SAVE line (which makes it RUN automatically upon loading) and a RAND USR line. Having POKEed the alien to its slowest speed, the game was stillfast, butnot sofast that I couldn't play properly.
About the best way I can sum up this game is "GREAT"! The game is good value at $£ 4.95$, with graphics second only to the real arcade game. My only minus for the game is that it does take quite a long time to learn to play properly. But then, most games that are too simple become boring after a time anyway. Recommended.

You have been seen gulping...

I bought Campbell Systems' GULP from W H Smith for $£ 3.95$. When I bought the game I was under the impression that this was a kind of one 'ghost' Pac-man game under a
new name. The only 'instructions' on the cassette for playing the game was "Can YOU outwit the GRUESOME GULPER that seeks out... gives chase... accelerates... and devours!". I had not much to go on. The game seemed to be saved under a name other than "GULP" as when I typed LOAD "GULP", it didn't load, and when I typed LOAD " " " it loaded very easily. It took about two minutes to load. The game auto-ran. A menu appeared, it said: "A...PLAY, B...MAZE, C...SPEED, D...GRADE, E....RESET, F...SAVE, PRESS G FOR INSTRUCTIONS." I pressed G. I was reassured that the game WAS a one 'ghost' version of Pac-man, the 'ghost' being called a 'chaser'. You have 5 lives and you have to eat up all the dots in the maze. The more you eat the faster he gets. You have a choice of 5 different mazes, wow! The cursor keys are used to move. You are an ' O ' and you start in the middle of the screen (on all games apart from game 3 where you start at the left-hand side). The chaser is an inverse ' X ' and he starts in the bottom right-hand corner. High scores are kept. Pressing newline again explained what the menu meant. The

LOOKOUT
SOME OF
CAUSING YOU ROCKS HIT YOU

THE FF IMEESE RE 3 RGRE.
TRY TO RESCUE THE PRINCESS WHO IS IMPRTSONED ET EUTL HIZARDS IN THEIR MAZE OF DUPGEONS. Y'OU MUST THEN ESCAPE HITH HER EEFORE YOU STARUE TO DERTH...

DESCEND INTO THE LEVELS RND FACE MANY PERILS, MONSTERS ROCKFRLLS AND TRAPS TO NRME R FEH.

1

speed of the game could be altered by pressing ' c ' and the appropriate number (1-9), and his acceleration could be altered by pressing ' d '. I set the speed to 1 and the acceleration to 1 for the slowest game. The maze was already set at 1 so 1 pressed ' A ' to RUN. The maze flashed up instantly, obviously written in machine code. It looked suitably complicated. The game moved at a reasonable pace. One point I noticed was that your movement stopped directly a finger was lifted from the key. This is different from the movement in the arcades and makes the game much harder.

The maze lacked things like power pills and tunnels, but the fact that you could choose one of 5 mazes and choose the speed and acceleration seemed to make the game just as good. In maze 5 the walls of the maze make the world 'GULP'! The game is very addictive and great fun, but I do have a few grumbles:

When the screen is cleared of dots the game does not display a new screenful. Instead it relies on you pressing the ' 0 ' key to end the game.

Some mazes have more dots than others, so if you win maze 2 for instance, you could still beat that high score on maze 1 . However, this problem is compensated for by a function that allows you to reset the high score.

My last grumble is that when a life is lost the chaser places another dot in the square that he started off from. This means that to obtain the best score you have to lose all your lives. This seems pretty idiotic.

However, after all those grumbles I still stick to my
statement that the game is exciting, addictive and great fun to play.

Michael Orwin wins again

From Loughton, 15-yearold James Walsh puts Orwin's Cassette Three through its electronic paces... and likes what he sees.

Eight programs on one cassette? Sounds ominous, last time I got one of these, the programs were so poor that they could have been copied out of the manual. Well, could this be different?

The first program is called "STARSHIP TROJAN" and the idea is that your starship is damaged and you have to repair it before becoming asphyxiated, dying of radiation, plunging into a supernova or some other gruesome death. The graphics on this are quite good, but the actual program was a bit slow for me. The second game is called 'STAR TREK' (original III). This is a good version of the well known (you said it) space game. Again because it was in BASIC I found it a bit slow but if you do not mind waiting around a little you may find it very good. The next program is called "PRINCESS OF KRAAL". Quite predictably this is another adventure game well it is not just another! With a visual map, different levels and a whole host of dangers, let alone 100 different difficulty levels, it makes for a very addictive game. The idea of 'MARTIAN CRICKET' is to get from one side of the screen to the other without hitting the balls being constantly hurled at you.

Though this game is simple it also becomes addictive. Of the remaining four games the one that caught my eye first was "KALABRIASZ" which is quoted as being the worlds silliest card game, and it lives up to it's namel Next comes CUBE which is a very well written simulation program of that dreaded mind-bender.
Coming a very close seventh an eighth are BATTLE and SECRET MESSAGE, both of which I found reasonably good.

Conclusion

I cannot comment on the documentation as I did not receive any. But I am assured that it is about six A4 pages long and comprehensive (it would have to be for some of these games). Altogether it is a well produced, good value for money cassette with eight very good to mediocre games on it.

Cassette 4

Michael Orwin seems to have got into the habit of selling cassettes of eight games all of which could have been sold separately for six pounds a piece, whilst he sells all eight on one high quality cassette for $£ 5$. The only way I can do true justice to these programs is by looking at one on it's own as if it was a different cassette.
(i) ZX- Scramble; has been written and marketed by other people, but this is by far the best version I have seen for the ZX81. The graphics are excellent and the speed is incredible even for a machine-code program.
(ii) Gunfight. This is one of the arcade type games which I definitely have not seen before
on the $\mathrm{ZX81}$. Although the name is misleading the idea is that you are one of two cowboys on the screen and whilst not hitting the stage coach which moves steadily up the screen, or one of the many cacti, you must try to shoot your opponent. The graphics are excellent, and this is definitely the best one-or-two player graphics games that I have seen for the 2×81 todate.
(iii) INVADER; Yes, I know, another invaders game and you've seen them all before, haven't you II But this one is actually is better than any other I have seen on the ZX81. The graphics are far better as you have three characters for each invader. The only thing that I found difficult was that the game did not stop and restart when you are hit.
(iv) GALAXY INVADERS; this is a very good machine code version of the Galaxians game, with very 'pretty' sweeping aliens.
(v) SNAKEBITE; This is not quite as graphically mind blowing as the last four, but with the ability to build walls, lay anthills and vary the speed it becomes a very addictive game. Oh I nearly forgot, the idea of the game is to eat the snake's tail first before it eats you.
(vi) LIFE; A cleverly written version of the well-known game with good graphics.
(vii) 3D TIC-TAC-TOE. This is the only BASIC game on the tape, which means it is slower. But it is an advanced and addictive version of the game.
(viii) FUNGALOIDS. Last but definitely not least we come to the most original game, Fungaloids, which is easily as addictive as Invaders. Although
the game is original there was no need to make the game so obscure! it has vague similarities to missile command, as the idea is to bomb the fungus as it grows, shedding spores. A weird but definitely wonderful game.

Conclusion

If each game was on a separate tape and selling for $£ 5$ each I would still recommend them. But all on one for $£ 5 \ldots . .1$ This sort of value for money just has not been seen before for any personal computer. It is interesting to note that out of the many software companies in this country, Michael Orwin is one of the few which has managed to continue to grow even after the Spectrum was announced.
Without sounding pushy I would like to conclude this review by saying - if you have a ZX81 and like games, then you should buy Michael Orwin's cassette 4 .
Available by mail order only from: MICHAEL ORWIN, 26 Brownlow Road, Willesden, LONDON. NW10 9QL

More pieces of eight

Following the recent launch of his first ZX81 cassette, Bargain Bytes One, Richard Shepherd is now offering a second; Bargain Bytes Two. As with the first cassette, it features eight varied progams for $£ 5$, but there are two extras. Firstly, a short test program at the start enables correct volume levels to be determined, and despatch is now promised within 24 hours of the order being received.

The new cassette features Seafaring Adventure in which the player commands a ship and tries to win promotion by his performance in battle. Skillful utilization of resources is vital. Supplies, men and ammunition must be carefully calculated and finely balanced.

When supplies run low, it becomes necessary to return to Port for them to be replenished. Naturally the journey is hazardous and the battles fierce, but a determined player can battle his or her way up the ranks to become First Sea Lord.

Other major games on the cassette are Stock Market, in which the player must make instant buying decisions as market information flashes appear, and Noughts and Crosses, which is on three levels; easy, beatable and impossible. There is also a 'Pub Style' Fruit Machine complete with random holds, systematic nudges and a winnings counter. A moving graphics Ski Run rounds up the games section.
On the educational front there is a General Knowledge Quiz, (with three levels) Copycat; an alphabetic Simon game, and a profit/break even point calculating money model.

Bargain Bytes Cassette Two is available now from Richard Shepherd, 22 Green Leys, Maidenhead, Berkshire, SL6 7 EZ . Telephone (0628) 21107. Price $£ 5$ including postage and packing. All programs require 16 K Ram Pack.

Michael Orwin's Cassette Three: Battle

JK Greye's '3-D Defender'
Campbell Systems' GULP:

Programming your computer for board

 cames There is one common thread which can holdtogether computer programs for such games
as draughts, chess, reversi and even Nine Mens
Morris. Tim Hartnell reveals the secret, and
shows how it can be used to write and in-
telligent board game - from scratch.

Look first at diagram one. It shows a draughts or chess board, numbered to make it easy for a computer to handle. You can indicate any square on the board by referring to the number along the left hand side (such as 3), then the number along the top (such as 4). In this case, the lines numbered 3 (along the left hand side) and in the line numbered 4 (along the top) meet at the square numbered 34 . If you wish to move a piece, you can do so by entering the number of the square you're moving from (such as 55), then the number you are moving to (such as 66), and the computer can understand exactly what you are doing. There is no need to change the numbers entered by the human player into another set of numbers in order that the computer can interpret them.

That's the first 'secret'. The second is that the board numbered in this way has another great advantage over a board which is simply numbered from one to 64 in order. When you move in any direction, no matter where you are on the board, the difference between the squares is the same.

I'll explain that somewhat cryptic statement. If you move one square up and to the right - like the move of a piece in draughts - you will move from, say, 24 to 35 ; or from 53 to 64 ; or from 71 to 82 . But notice that no matter where you are on the board, the difference between your starting and ending squares is always

Fig 1 A chessboard game which a computer can use! All the squares are numbered up in ranks and files, so that the machine can be told exactly where to go!

11．If you move diagonally up to the left，you＇ll move from， say， 26 to 35 （plus 9），or 66 to 75 （plus 9）or 22 to 31 （plus 9）．

This predictability makes it relatively simple to create a board which the computer can handie．

Imagine the computer has a draughts piece on the square numbered 24．It could be pro－ grammed to check each square on the board，and every time it found one of its own pieces， could check if there was a human piece on the square numbered that（ie． 24 in our ex－ ample）plus 11 （ie．on 35）；and it could check to see whether the square 11 beyond that（ie． 46），was blank．If it found all these conditions were true，the computer could jump over square 35 into square 46 ，and capture the piece on 35 ．

This，in essence，is how many computer board games －from draughts，through Reversito chess－work，based on a simple 8×8 grid numbered in this way．

If you were writing chess on this board，you could specify the moves of，for example，a knight，by knowing that it can always move to squares which are the following＇distance＇ from its own squares： 21,12 ， $-8,-19,-21,-12,19$ or 8．Try it now，by placing a coin on square number 55 ，and move it as if it was a knight， working out the mathematical relationship between the star－ ting square，and the square you＇re moving to．You should find the differences are the same as the numbers just listed．

The Pieces

Let＇s move on now to produce a board game，making use of the information we＇ve discussed so far in this article．We are go－ ing to write CORNER CHECKERS，which will be a game much the same as draughts，except that it is played by starting in the corners of the board rather than the ends，there are no multiple jumps，and no kings．Any piece may move in any diagonal direction．Captures are as in draughts，by jumping over an opponent＇s piece into an empty square，always moving on the diagonal．First we need an ar－ ray to hold the pieces．We＇ll start the program with a title， and a GOSUB to send action to line 9000.

It is a good idea to assign the

variables at the end of the pro－ gram，as it makes the program run a little more quickly once the subroutine has been run（as it saves going right through the ＇variables assignment＇section every time the computer is go－ ing through the program，line by line，to find a GOTO or GOSUB address），and if you suddenly discover，when you＇re writing a program，that more variables are needed，there will be no shortage of places to put them， which there could well be if the variables were assigned at the start of the program．

The first＇mini－program＇ we＇ll enter，then，is program one．Next，we have to decide which squares on our board will be occupied by pieces，and what codes we will assign to those pieces．We＇ll be playing on the black squares in this game，starting the human pieces on 11，13，15，22，24， $31,33,42$ and 51．The com－ puter＇s pieces will be on squares $88,86,77,68,84$ ． 75，66，57，48．All other squares will be blank，and there will be－of course－other squares（such as those with numbers below 11 and above 88）which are off the board．

We need to assign the values to the elements of the A array，which we do by running through a loop，from one to 100.

Look at lines 9010，9020， 9030 and 9040 in program two．These are acting as＇data statements＇，holding the

10 REM CORNER CHECKERS
20 GOSUB 9000 3990 STOP
9000 DIM A（100）
Program One：the opening lines of a $Z X$ board game！The array is to hold the pieces in the memory of the $Z X$ Computer．

9000 DIM A（100）

9010 LET H\＄＝． $111315222431334251^{\prime \prime}$ 9020 LET C $C=* 888677688475655748 *$ 9830 LEI B事 $=\cdots 1214161821232527323$ 43638414345475254565861636567727 $4767881838587{ }^{\prime \prime}$
9040 LET E事＝＇8273645546372817263 $5445 \overline{3} 52{ }^{\circ}$

9120 LET A（UAL C $⿻=$

9140 NEXT Z
9150 FOR $Z=1$ TO 32

9170 LET B
9130 NEXT Z
9190 FOR $z=1$ TO 14

9210 LET E事＝E事（3 TO）
9220 NEXT Z
9230 LET COMP $=0$
9240 LET HUM＝0
9250 PRINT RT 5 ，D；＂DO YOU WANT T HE FIRST＂＂MOU
9265 CLS
9276 IF CODE U事く $2 E O D E$＂Y＂THEN G OTO 50

9500 RETURN

Program Two：this section of the program holds the starting position of all of the pieces in the game．It also assigns names to the main variables used．

Program Three：a central part of our checkers gamel This little routine prints out the board and the position of all of the pieces．Don＇t forget to add on tine 30 before you try to run this sectiont

7000 REM＊＊PLAYER MOUE＊＊
7010 PRINT AT 19,0 ；＂ENTER YOUR M OUE AS＂＊3344 7020 INPUT A京
7030 IF LEN A車く $\langle 4$ THEN GOTO 7BDO 7040 PRINT AT 19,$0 ; \cdots$
7050 LET $A=U A L$ A\＄ 11 TO 2）
7OEQ LET B＝UAL A事（3 TO 4）
$7 Q 70$ LET $R(B)=R\{R)$
7 フ80 LET A（R）＝E
7090 IF ABS $(\bar{A}-B)>11$ THEN LET $A($ $(A+B)(2)=E$
$71 Q Q$ IF ABS（A－B）>12 THEN LET HU $M=H L M+1$
7900 RETURN

Program Four：the easiest of all the subroutines employed in the game is that to make and record your move，ie．the＇human＇move．You must add line 40 to Program One in order to utilise the routine in the game．

Program Five：after adding on line 60 as outlined in the text，you are ready to give the $Z X$ intelligence！This program allows your computer to work out possible＇captures＇and action them．

numbers of the squares which will be assigned． $\mathrm{H} \$$ holds the starting human squares，C \＄the starting computer squares，B\＄， the empty or＇black＇squares （they are white on our number－ ing diagram，but are black here to give a good appearance when the game is underway）， and $E \$$ for squares which will be empty at the start of the game，but which will be used for playing on once the game gets underway．

The first routine after the ＇data＇statements，lines 9050， 9060 and 9070 ，give a value of 9 to all squares．This value will later serve as an indication of ＇off the board＇．The lines from 9080 to 9100 give the values which will be assigned to the other squares．The variables are given names to make it easy to keep track of them during the game－H for human＇s piece，C for the computer＇s，E for an empty square and B for a black one．

Having run program two we need to check that it is working correctly，by printing out the board and seeing it is correct． Note that the RETURN line is numbered 9500 to give as much room as needed for work－ ing．Enter your program up to the end of program two，and make sure it runs through without a hitch．The code 9／8990 shows it is working perfectly．We will put the subroutine to print the board starting from line 8000 ．Add

30 GOSUB 8000，and then add program three，and run the whole program again．

If all goes well，a complete board，set up for CORNER CHECKERS，should appear． Once it has（and it is very pleas－ ing to see the board on the screen as it looks far stronger than the printout would sug． gest），add 8130 RETURN，and you＇re ready to add the next part of the game．

Human Mover

The human moves are the simplest to program．In essence，all we need is an input to take the square the human is moving from，an input for the square the human is moving to， and a means of turning the ＇square from＇blank（ E ）and the ＇square to＇into a human square (H) ．It is also useful to check that the human is not cheating， and there will have to be some mechanism for＇erasing＇pieces which the computer has jumped over，but－for now－ let＇s just arrange for a simple， non－capture move．We＇ll start the PLAYER MOVE subroutine at line 7000．Add 40 GOSUB 7000， 50 GOSUB 8000，then enter program four．

Run this，and enter your move as suggested as 3344 － that is，two numbers．If all is well，you＇ll see the＂ H ＂move from square 33 to square 44 ． The program will keep cycling in its present form．Try moving a few other pieces，even com－
puter pieces. You'll see there is one check, line 7030, to make sure the move consists of four numbers.

This program includes a line to remove a piece which has been captured. Look at our master numbered board. If the player moves from 42 to 64 , and there is a computer piece on 53, the piece on 53 must be removed. Fifty-three is half of 42 plus 64 , which gives us an easy way of finding out which piece to 'delete'. Try out some 'captures', making sure the
captured piece vanishes, and the human score is incremented.

Once you're happy with this, we start the biggest task of all, adding 'computer intelligence'. We'll start the computer's thinking subroutine at line 6000, so add 60 GOSUB 6000.

Computer Mover

Let's think about how the computer can be 'taught to play'. It must first scan the board,
square by square, looking for any and all possible captures, so obviously it needs a loop of some kind. Look at lines 6010 to 6040 in program five. They go through the board, square by square, looking for a peice and once one is found, goes to line 6050 to find out what to do with that piece. The relationship between the squares on the board is plus eleven and minus eleven, plus nine and minus nine. The computer knows that if a human piece is on, say, a square eleven more
than it is, and the square beyone that (its square number plus two times eleven) is empty, it can capture by jumping into the empty square. Add the lines between 6000 and 6200 (program five) and set up a capture or two for the computer, by moving some of your pieces into danger. It is fascinating (and quite pleasing) to see the computer finding possible captures, and making them. Random moves are the next thing we should implement.

We add the lines from 6200

Programming

onwards（program six）to achieve this．There are a number of things we need to do for＇intelligent＇（ie．non－ sacrifice）moves：find a piece （line 6230）and then check around this piece（from line 6260 ）to make sure that we are not moving the piece into a potential capture situation．If， after 200 squares have been chosen in this way，no move can be found，the computer goes to 6500 and choses 200 more squares，this time not checking to see if it is moving into danger．If no moves can be
found，it goes to line 6500 and concedes defeat．Following through the possible moves will show you how this（somewhat complex）routine works．

Finally，add the remaining lines for the main loop（program seven），which keeps the whole song and dance underway．The game continues until one of the player＇s manages to capture seven of the opponent＇s pieces．

There is quite a bit you can do to improve this game，in－ cluding speeding it up by ensur－ ing that when it picks squares
at random it does not select the same one more than once in any particular move．Also，the prin－ ting of the board（especially the numbers down the left hand side of the board）slows the game down．You may well be ablve to improve this．

The final page of this article shows some stages in a typical game against this program．

In the next issue of $Z X$ Com puting，Tim Hartnell will look at a way of modifying this pro－ gram to get a display which fills the entire screen including play－
ing pieces which you define yourself．As well，he will show how＇Corner Chekcers＇can easily be changed into＇Spanish Checkers＇．A way to change the board subroutine so only the moved piece is reprinted will also be discussed．

Tim Hartnell is particularly interested in examining varia－ tions of the program given in this article，and in looking at programs derived from it．The best ideas（send complete description，and printer listing please）will be used in the next bumper issue of $Z \times$ Computing．

E2DO REM＊NNON－CAPTURE MONE＊＊
6210 FOR $z=1$ TO 己QQ
E己き0 LET K＝INT（KNU＊75）＋2．
6230 IF $F(K)=C$ THEN GOTO ESEQ
6240 NEXT Z
6250 GOTO 5500
E2EQ LET $\quad \gamma=-11$
6280 IF $A(K+Y)=E$ THEN GOTO 5330
E290 LET $\gamma=-9 \div(\gamma=-11)+9 *(\gamma=-9)+1$

5300 IF $Y<>0$ THEN GOTD ESTQ
6310 NEXT Z
6320 GOTO ES00
6330 IF $K+2 x Y>88$ OR $K+2 天 Y<11$ THE N GOTO 6400
8340 IF $A(K+2 x Y)=H$ THEN GOTO 524 a
6350 IF $K-2 x Y<11$ OR $K-2 x Y>88$ THE N GOTO 6400
6360 IF $A(K-2 * Y)=H$ THEN GOTO 624.
（a）
$E \$ 00$ LES $A(K+Y)=A(K)$
6410 LET $A(K)=E$
5420 RETURN
6500 FOR $G=1$ TO POQ
6510 LET $K=$ INT（RND $* 78$ ）+11
6520 IF $A(K)=C$ THEN GOTO $660 \square$

6530 NEXT G
6540 PRINT AT 0,$0 ; " I$ CONCEDE THE GAME＇
5550 STOF
EEQQ IF $A(K-11)=E$ THEN LET $Y=-11$ 6610 IF $A(K-11)=E$ THEN GOTO E4QQ 6620 IF $A(K-9)=E$ THEN LET $Y=-9$ 6530 IF $A(K-9)=E$ THEN GOTO 5400 5540 GOTO 5540
5980 RETURN
Program Six：when no pieces are being taken，the move involved is simpler．It is，however，desirable to have the computer make a＇random＇move occasionally so that games are not predictable and boring！This subroutine will throw in an occasional＇wild－cat＇that just might be brilliant！

10	REM CORNER	CHECKERS
20	GOSUE 9000	
37	GOSUE S000	
40	GOSUE 7000	
50	GOSUE 8000	
60	GOSUE 6000	

70 GOTO 30

Program Seven：after all the additions your introductory list should look like this．Each GOSUB will shift the ac－ tion to a different section of the program in turn，pro－ ducing a full interactive game．

COMPUTER , 5 \& HUTAN

COMPUTER , 6 4 \angle HUMFN

I wIT4

COMFUTER : $? ~ S$ \& HMFN

So you think you're smart, eh? Try and beat the program before you boast too much! Follow the game through (down each column in turn) and see if you would have done any better than our hapless editor who, although he got his nose briefly in front, ended up wiped out by the ZX!

The computer move routine is surprisingly effective in games like this where the moves are strictly limited in type and a logical approach is best most of the time. Your best chance of victory is to wait for a 'mistake' ie. a bad random move and then capitalise on it. If the $Z X$ throws in a genius move instead. . . forget it!

TROUBLE FREE PROGRAMMING FOR ONLY £ 13.95 inc vat
 (•£1.40 p/p)
 WITH THIS BACK-UP RECHARGEABLE BATTERY PACK AND MAINS FILTER.
 NO MORE PROGRAMME CRASHES DUE TO MAINS FLUCTUATIONS AND TRANSIENTS

If you use or programme computers you know the frustration and problems caused by sudden drops in the mains supply or high voltage transients. Hours of tedious programming can be lost in a fraction of a second.

Here at ADAPTORS AND ELIMINATORS, who are one of the largest suppliers of mains adaptors to the computer industry, we have developed this rechargable battery pack and mains filter.

- No more programme crashes due to mains fluctuations.
- In the event of a power cut your computer will run for up to 30 mins , allowing you to record your programme on a battery cassette, or print a hard copy on your printer.
- The battery pack is also a useful source of 9 v power, for use on radios, tape recorders etc. Use your adaptor to charge overnight.

Operation could not be simpler. Plug the lead from your ZX adaptor into the socket on the battery pack (male or female are provided). Then using the lead supplied connect the battery pack to your ZX computer or Spectrum.

The battery pack then provides instant back up to the adaptor, leaving you to programme without fear of crashes due to the mains. (Poor mains supplies are responsible for about 90% of all programming faults.)
The pack is housed in a smart ABS case and comes complete with full instructions. No wiring required - JUST PLUG IT INII We urge you to protect your programmes. Order now - Only £13.95 + P/P
PLEASE NOTE: This pack is suitable for all computers using a 9 v supply but you may need to change the plugs.

FOR TROUBLE-FREE COMPUTING ORDER NOW. MAIL ORDER ONLY SEND TO: ADAPTORS AND ELIMINATORS LTD. 14.THAMES ST, LOUTH, LINCOLNSHIRE. PLEASE SUPPLY \qquad (Qty) Rechargeable Battery Packs at $£ 13 \cdot 95+£ 1 \cdot 40 \mathrm{p} / \mathrm{p}$ \qquad TOTAL
NAME \qquad ADDRESS \qquad

ALLOW 28 DAYS FOR DELIVERY, MONEY BACK GUARANTEE IF NOT ENTIRELY SATISFIED.

NEWSOFT PRODUCTS

M. Newman, 12 Whitebroom Road, Hemel Hempstead, Herts.

ZX-81 AND SPECTRUM SOFTWARE SECTION I GAMES

ROULETTE 2×-81 and SPECTRUM
£4.95
The lras successtul mplementation for a microcomputer Suil the only one which allows alliegal bets and payouts. with mutiple mixed bets on each spin of the wheet One of two players aganst the bank Graphics show chips and table layout Spectrum vers on reduced to fit 9 K programmable RAM One player only Dut whth colou and sound $\mathrm{ZX}-81$ AND SPECTRUM ROULETTE CAN BE USED TO TEST ANY SYSTEM BEFORE
YOU RISK REAL MONEY,
TIME BANDITS ZX 81 and SPECTRUM
£4.95
Two programs for the price of onel Side A holds five new, fast moving games, accessed from a menu On Side B the games are combined to form an adventure in time and space Spectrum version rewniten to 19 9K programmabie RAM Colout, sound and user detined graphics added to make an excelient progam
RAMPAGE $\mathrm{ZX81}$ and SPECTRUM
£4.95
A logical chase around your memory map. bug, poke or crash rival computers. Set you Skill ievel trom Look no hands" to "The budge could do better" ZX 81 version uses Ppcturosque s screen kit I tor superb screen displays Spectrum versuon has tull colout

SECRET VALLEY $\mathrm{ZX81}$ and Spectrum
$£ 4.95$
Fast moving adventure with superb graphics Search the valley for spelistones, the sword of power and the Crown of Lite Promotion from Monster Fodder to Master of Destiny Comes only by defeating the monsters Soectrum verson doos not include sate casteo character save Main map is loaded by screen 5 rouve Full colout, sound and instruc-
thons
THE GREAT WESTERN ZX81 and SPECTRUM £4.95 Waggons roil actoss America Guide a waggon train on the Oregon traid Contains three
new games - 5 Shoot the moose". Dig for gold and Indians? 2×81 version uses new games - -Shoot the moose" "Dig for gold and indians7 2×81 version uses
Picturesques icreen kit I tor great screen effects. Soectrum version has colour and Picturesque's screen kif I tor great screen effects. Soectrum version has colour and
sound sound

All programs require 16 K minimum RAM. Prices include postage etc. Full instructions supplied.

P. F. L.
 HIGH QUALITY PROGRAMS TO HELP YOUR CHILD LEARN

PFL is currently testing a new series of educational software and the first programs are now available for sale to run on Commodore and Sinclair micro computers. The software is specifically designed to provide controlled drill and practice in graded exercises for children aged 7-11 in the following subjects:

English
 Arithmetic

Verbal Reasoning
Reading and Spelling
(with special consideration for remedial problems)
Each program has been especially designed by highly qualified, experienced educationalists and written by professional programmers. Trials have demonstrated that these programs really stimulate children's enthusiasm and do help them to realise their academic potential. They will be of great value to parents and teachers for normal, advanced and remedial training and also for those preparing children for Common Entrance/Independent School Entry examinations
For further details please write to PFL at the address below, stating whether you are a parent or teacher, the type of computer available and in which subjects vou are interested.

PROGRAMS FOR LEARNING,
Dept. ZX,
4 Stanley Road,
East Sheen, London SW14 7DZ.
Tel: 01-878 6498

Tim Hartnell's previous books have been warmly welcomed by the computer press:
". . . This is undoubtedly the book to read . . ." Personal Computer World ". . . A book to be recommended . . ."Computing Today

The book you've been waiting for!

This is a book that will allow you to make the most of the ZX Spectrum - a book that will lead to you 'expert programmer status within weeks.

There are two major sections - the first for those who have no previous experience of computer programming. and the second containing advanced material for really powerful programming. All sections of the book make good use of the full eight colours, sound generation and high-resolution graphics. You're also shown how to make the most of Sinclair BASIC features such as DEF FN, SCREEN\$, MERGE and FLASH.

Key features of 'Programming Your ZX Spectrum'

- Using the colour effectively BRIGHT, FLASH, INVERSE and more.
- Sound - there's more to the BEEP than meets the ear.
- Finding your way around the keyboard, the use of every keyword, command and function
- High resolution graphics - how to use them for stunning displays, how to create your own version of the famous arcade game 'Pacman' with user-defined graphics.
- The ZX Spectrum has the full ASC1 1 character set and this book includes a word processor program to make best use of it.
- The Spectrum LOAD and SAVE is highly reliable, and the MERGE and VERIFY features increase its flexibility. Programming Your ZX Spectrum outlines simple ways to ensure you never lose a program.

The ZX Printer

All program listings are dumped direct from the ZX Spectrum, so all programs are guaranteed to run.

The Microdrive

An appendix to this book details the commands needed to use your ZX Spectrum with the Microdrive microfloppy so you'll be ready when it comes on the market.

Interface,

Dept. ZC
44-46 Earis Court Road,
London, W8 6EJ

Interface Publications

The UK's leading publisher of proven microcomputer books

```
Intortace, 44-48 Earis Court Aosd, London ws beJ () Mastering Machine
Please send me the tollowing
                                    Code on ZX81 - £7.50
( ) Programming Your
        ZX Spectrum - £6.95
( ) Sixty Games and
        Applications for
        the Spectrum- £5.95
    ( ) Getting Acquainted
        With Your ZX81 £5.95
```


Hit the deck

John Butler and Dave Groombridge have written this program in which you have to try and land a plane on an aircraft carrier, during a particuarly violent wind.

150 DIM A(17)
160 FORI=0 TO 17
170 PRINTI,
180 INPUT X
190 LET $\mathrm{A}(\mathrm{I})=\mathrm{X}$
200 PRINT A(I)
240 NEXT I
PRESS RUN AND ENTER NEW LINE
(This will produce O in the top left hand corner of the screen. Enter the following values in turn, pressing NEW LINE between each value.)
$0,3,5,134,4,7,0,128,133,132,128,130,0,0,3,133,0$, 5.

PRESS NEW LINE
(The above lines will be over-written in the following listing:)

```
10 LET V = 700
20 LET L = 2000
30 LET K =L/100
40 LET D=1
50 CLS
6 0 ~ I F K < ~ < ~ T H E N ~ G O T O ~ 5 5 0 ~
70 IF D = 4 AND K > 4 THEN PRINT "OVER-SHOOT"
80 LET J=20
9 0 ~ P R I N T
100 IF J=K THEN GOTO 130
110 LET J=J-1
1 2 0 \text { GOTO } 9 0
130 IF D > 3 THEN GOSUB V
140 IF D > 2 THEN GOSUB V
150 IF D>1 THEN GOSUB V
160 FORI=0 TO 2
170 FOR X=0 TO 5
189 PRINT CHR$ (A(X + 6*1));
```

The screen display shows an aeroplane in the top left hand corner, with the sea at the bottom, and an aircraft carrier landing platform in the right hand corner.
The idea is to land your $\mathrm{ZX80}$ aircraft onto the carrier's deck, taking note of the very gusty wind conditions given to you by the carrier's air traffic control.
These reports are given by a readout at the bottom of the screen, showing either ' E WIND' (easterly), 'W WIND (westerly), or 'NIL WIND'.
If a westerly wind is prevailing, you will have to enter less power (power values are zero to 200), and the opposite for an easterly wind, when you'll need to enter more power. As a hint, the ideal landing speed (power input) is around 80 knots.

If you are too high, and unfortunately overshoot, press any key to start your approach again.

This program fits a 1 K ZX80.
5 1 0 GOTO 50
520 PRINT "(shift S six times)"
530 PRINT "LANDED":
5 4 0 ~ S T O P
500 PRINT "CRASHED"
700 PRINT,;

```
```

500 LET K = K - A

```
500 LET K = K - A
```

510 GOTO 50
520 PRINT "(shift S six times)"
530 PRINT "LANDED";
550 PRINT "CRASHED"
700 PRINT,;

```

710 RETURN
900 INPUTH\$
910 IF H\$ \(=\cdots \cdot\) THEN GOTO 1
DO NOT PRESS RUN! (This will clear all the variables)
GO TO 1 NEW LINE

10 DIM A(7)
20 LET A \((1)=2016\)
30 LET A \((2)=A(1)\)
40 LET A \((3)=32766\)
50 LET \(A(4)=32638\)
60 LET \(A(5)=A(3)\)
70 LET A \((6)=A(1)\)
80 LET \(\mathrm{A}(7)=\mathrm{A}(1)\)
90 FOR B - 1 TO 7
100 LET C \(=2^{*} *(2 *(8-B)-1)\)
110 FORD=1 TO 7
120 LET \(\mathrm{E}=\left(\mathrm{A}(\mathrm{D})\right.\) AND \(\left(3^{\circ} \mathrm{C}\right)\) )
130 IF \(=\) = * 3 THEN PRINT " (shift A) * ";
140 IF E \(=2^{\circ}{ }^{\circ} \mathrm{C}\) THEN PRINT " 0 *";
150 IF E=0 THEN PRINT " . . ' ;
160 NEXT D
170 PRINT
180 PRINT
190 NEXT B
200 FOR B=1 TO 7
210 IF \(\mathrm{B}=4\) THEN GOTO 240
220 IF NOT (A (B) AND 10922) =0 THEN GOTO 280
230 GOTO 250
240 IF NOT \(\mathrm{A}(\mathrm{B})=21972\) THEN GOTO 280
250 NEXT B
260 PRINT " YOU WIN "

The first digit defines the vertical column (1-7), numbering from left to right, and the second digit defines the row (1-7), counting from the bottom to the top.

The first move will always therefore be 44. The program tests for the end of the game, although it cannot detect a stale-mate position.

Havant, Hants, is the haunt of Michael Whitcombe, where his ZX80 has cooked up this program for the game of peg solitaire.

Fitting an unexpanded ZX80, the program holds the board as an array of seven elements, with each board position defined by two bits. Therefore, each array element defines a row of the board.
```

270 STOP

```
270 STOP
280 PRINT " YOU MOVE FROM * ' ";
280 PRINT " YOU MOVE FROM * ' ";
290 INPUT B
290 INPUT B
300 IF \(\mathrm{B}>75\) OR B<13 THEN GOTO 290
300 IF \(\mathrm{B}>75\) OR B<13 THEN GOTO 290
310 PRINT B, "TO"
310 PRINT B, "TO"
320 INPUT D
320 INPUT D
330 IF D \(>75\) OR D \(<13\) THEN GOTO 320
330 IF D \(>75\) OR D \(<13\) THEN GOTO 320
\(340 \operatorname{IFNOT}(\mathrm{ABS}(\mathrm{B}-\mathrm{D})=2\) OR ABS \((\mathrm{B}-\mathrm{D})=20)\) THEN GOTO
\(340 \operatorname{IFNOT}(\mathrm{ABS}(\mathrm{B}-\mathrm{D})=2\) OR ABS \((\mathrm{B}-\mathrm{D})=20)\) THEN GOTO
    470
    470
350 LET C \(=B / 10\)
350 LET C \(=B / 10\)
360 LET \(\mathrm{E}=\mathrm{D} / 10\)
360 LET \(\mathrm{E}=\mathrm{D} / 10\)
370 LET F \(=(C+E) / 2\)
370 LET F \(=(C+E) / 2\)
380 LET \(\mathrm{G}=2 * *\left(\left(\mathrm{~B}+\mathrm{D}-20^{*} \mathrm{~F}\right)-1\right)\)
390 LET \(\mathrm{B}=2^{*}\left(\left(\mathrm{~B}-10^{*} \mathrm{C}\right)^{*}-2-1\right)\)
380 LET \(\mathrm{G}=2 * *\left(\left(\mathrm{~B}+\mathrm{D}-20^{*} \mathrm{~F}\right)-1\right)\)
390 LET \(\mathrm{B}=2^{*}\left(\left(\mathrm{~B}-10^{*} \mathrm{C}\right)^{*}-2-1\right)\)
390 LET \(\mathrm{B}=2^{*} \cdot\left(\left(\mathrm{~B}-10^{*} \mathrm{C}\right)^{*} 2-1\right)\)
390 LET \(\mathrm{B}=2^{*} \cdot\left(\left(\mathrm{~B}-10^{*} \mathrm{C}\right)^{*} 2-1\right)\)
400 LET \(\mathrm{D}=2\) * \(^{*}\left(\left(\mathrm{D}-10^{*} \mathrm{E}\right)+2 \cdot 1\right)\)
400 LET \(\mathrm{D}=2\) * \(^{*}\left(\left(\mathrm{D}-10^{*} \mathrm{E}\right)+2 \cdot 1\right)\)
410 IF NOT \((A(C)\) AND \(B)=B\) OR NOT \((A)(E)\) AND \(\left.3^{\circ} D\right)=2 D\)
410 IF NOT \((A(C)\) AND \(B)=B\) OR NOT \((A)(E)\) AND \(\left.3^{\circ} D\right)=2 D\)
        OR NOT \((A(F)\) AND \(G)=G\) THEN GOTO 470
        OR NOT \((A(F)\) AND \(G)=G\) THEN GOTO 470
    420 LET \(A(C)=A(C)-B\)
    420 LET \(A(C)=A(C)-B\)
    430 LET \(A(E)=A(E)+D\)
    430 LET \(A(E)=A(E)+D\)
    440 LET \(\mathrm{A}(\mathrm{F})=\mathrm{A}(\mathrm{F})-\mathrm{G}\)
    440 LET \(\mathrm{A}(\mathrm{F})=\mathrm{A}(\mathrm{F})-\mathrm{G}\)
    450 CLS
    450 CLS
    460 GOTO 90
    460 GOTO 90
    470 CLS
    470 CLS
    480 PRINT "INVALID"
    480 PRINT "INVALID"
    490 GOTO 90
```

 490 GOTO 90
    ```

\section*{from}

Scrambe

\section*{DRACULA!}

\section*{BD HORROR}

Occupying over \(131 / 2 \mathrm{~K}\) of memory, a superb 3D graphics adventure game for the ZX81 with 16K RAM, for only \(£ 3.95\) ! Enter Dracula's tomb at 30 minutes to sunsent ... wander through the tomb's pre-mapped 300 vaults in search of the fabled Vampire's Treasure ... pick up valuable silver stakes and use them to defend yourself against the lurking horrors ... ghouls, zombies, pits of primaeval slime ... See them all on the ZX81's plan of the tomb ... when it will let youl Take a chance on a Mystery Vault ... if your dare! And all the time the minutes are ticking by to sunset ... when Dracula rises from his coffin and comes after you! EaCH of the infinite levels of the tomb has its own 300 vaults ... go as deep as you like, the Prince of Darnkess will seek you out in his blood-lust! WARNING: people of an exceptionally nervous disposition should play this game only during the hours of daylight! Special facility enables a game in progress to be saved on tape so you can continue it whenever your choose.

Price of only \(£ 3.95\) includes ready-to-load cassette with library case and inlay, full instructions, postage and packing. Order today! Money refunded if not delighted! Send cash, P.O. or cheque to:

MOVIEDROME VIDEO DEPT. ZC1
19 Leighton Avenue, Pinner, HA5 3BW.
The high-speed arcade
game. Easily the fastest
available. 32 zones, thrust and altitude controls.

Suppied on cassette inth utirary case

\section*{ONLY \(£ 3.95\)}

\section*{Other great ZX games and add-ons} from Mikro-Gen:

Space Invaders
the best you can get, with ever-increasing rate of play

\section*{Breakout}
with seven bat angles to make it really difficult

\section*{Bomber}
positively addictive

\section*{ZX Chess}

The original- and still the best!

\section*{Sorcerer's Castle}
takes you into a world of magical adventure

Above guties all suppled on cassette wh ntratycase
£3.95 each (ZX Chess £6.50)

\section*{A/D Converter Board}

Lets you connect analogue joysticks to the \(\mathrm{ZX81}\) digital inputs. Suitable for many other applications, easy to connect and it improves RAM pack stability! ONLY £18.50 Joysticks
Connect via our A/D Boardmakes your \(\mathrm{ZX81}\) a true programmable games machine ONLY £9.50 EACH Disassembler/Monitor
An absolute must when learning machine codelets you enter and run your own code ONLY £3.95

Write for full details of the Mikro-Gen range of programs and add-ons. available from local stockists or direct from the manufacturers (please make cheques \(P\) P s payable to Mikro-Gen and add 40 p post \(\$\) packingi

Supplers of Sottware to Snciar

\section*{}

24 Agar Crescent Bracknell Berks RG12 2BK
Tel: Bracknell (0344) 27317

\title{
Getting a little joy
}

\section*{Jeremy Ruston takes a firm grip on a Microgen joystick . . . and likes what he finds.}

The Microgen joystick system costs \(£ 19.80\) for the controller board, and \(£ 9.60\) for each joystick - a maximum of two can be attached.

The controller board fits between the ZX81 edge connector and the 16 K RAM pack. This arrangement may look a little unwieldy, but I am assured that due to the fact that the RAM pack is now hanging at a slightly different angle, it is fully supported by the table, which apparently clears up the lingering problems with the pack.

The side of the board, which is not cased, has two sockets for the two possible joysticks. The standard of construction of the board is very high, although sockets have not been used for the nine integrated circuits which if anything makes the connections more reliable. Besides the ICs, there are 20 or so discrete components, and a potentiometer on the board. The potentiometer is used to adjust the range of values generated by the joystick. This only needs to be done once, and Microgen supply a short program to assist in setting this potentiometer.

\section*{Making up for \(\mathbf{X}\)}

The joysticks themselves are made by Radio Shack (Tandy), and look rather like a RAM pack with a pencil sticking through it. The stick itself does not return to the central position when it is released, but it's very subjective if you like it to or not.

The cable supplied is good and long, so even if your \(\mathrm{ZX81}\) is forced to sit within two feet of your TV by Sinclair's idea of an aerial lead, you can play games from a decent distance, in comfort.

So much for the hardware, but what of the software? All data transfers between the computer and the joysticks are made by PEEKing and POKEing
to and from location 16000 (decimal). Before reading data from the joystick it is necessary to POKE a number to the location, to specify whether you wish to read Joystick 1 or 2, and whether you wish to read the \(X\) or \(Y\) values. That is basically all there is to using them, except that if a value greater than 128 is read, the 'fire' button (provided on each stick) is being pressed. I found it very easy to write
simple programs using these devices, even in machine code, and any game written in BASIC should be easy to convert.

\section*{In Conclusion}

To sum up, I feel these make interesting peripherals for the ZX81 (and probably ZX80) enthusiast, but - and it's a big but - the system does come out to be expensive, in relation to a ZX81 in kit form.

Thoroughly recommended.
As a postscript, I've just heard that the Microgen boffins are developing a range of quality games (about a fiver a cassette) to use the joystick, including Space Invaders. I was supplied with a maze game, which they at Microgen called 'a side-B game', which was fairly impressive.

Many thanks to Microgen for the review Joysticks.


\section*{A test of skil}


5 REM＂GRAND PRIX＂ ROGRAM \(* *\)
20 PRINT， \(2, " \cup U S E\) THE KEYS Q W
 YS N，M TO BRAKE／ACCELERRTE：


215 LET \(A ⿻ ⿱ 口 口 丨 刃 ~(X, Y)=" *\)
GET \(Z=Z+2\)
140 NEXT \(\times\)
160 LET \(5=0\)
170 LET \(U=100\)
175 LET A事（24，25）＝＂－＂
180 SLOW
LET \(\hat{y}=34\)
210 PRINT AT \(\times, \gamma-1 ; "\) G
2この PRINT AT \(\theta\) ， 0 ；＂READY．．．＂
240 PRINT 4－w；．．．．＂；
250 PAUSE 50
265 PRINT AT 0，©；＂SPEED ：©

280 GOSUS 1300
290 PRINT AT \(X, Y-1 ; A \$(X, Y)\)
ЗO0 LET \(x=x+I\)
310 LET \(Y=Y+J\)
320 PRINT \(A T X, Y-2 ; " W\)
1500

\section*{LET \(T=T+1+U / 100\)}

LET S
PRINT AT＠，6；5；＂\(\cdot\) ；AT 0，16
330 IF INKEY事 \(=\cdots \cdot\). THEN GOTO 290
TS5 IF INKEY朝＂M＂OR INKEY\＄\(=\)＂N＂
34 ，
350 THT
990 STOP
999 REM CQURSE DATA
1 बबの LET E事（2）\(={ }^{\prime} \cdot 12131415\) ．
1010 LET B串 \((\)（2）\(=\cdots 101116252627\)
1020 LET E\＄（今）＝＂0708091314172428
1030 LET B\＄（4）＝＂0511121518222326
1040 LET E \(\$(5)=" 0405080910161920\) 1252730
1050 LET \(B\) क \((E)=" 0203071723242831\)
1050 LET E\＄（フ）＝＂010506181920こ1こを
2931
60

\section*{Jim Archer of Frimley， Surrey，puts you in com－ mand of your ZX81 in a well written GRAND PRIX program．}

This is a game of skill，combining steering，braking and ac－ celerating around a rather com－ plex race track．

The car is steered into a star－ ting speed of 40 mph from which you can accelerate up to a maximum of 200 mph ，but it is quite difficult to complete the course at this speed without crashing at least once，and every crash costs you an extra

10 seconds．
There is a PAUSE statement within the main loop which is related to the current speed，so the program does actually get faster as your speed goes up．

At the final lap，the average time／lap is given in minutes and seconds and the driver is graded between＂ A ＂and＂ F ＂．Only the best can attain an＂\(A\)＂－the ＂CONCEIT＂grade．
 \\ \section*{Iland nerves！} \\ \section*{Iland nerves！}


1070 LET E事（ 5 ）\(=\)＂0104121314151629 1080 L巨T E末 \((9)=" 02041117 \supseteq 932 "\)
1090 LET E事 \((10)=" 020508091011131\) 415183032
1100 LET \(\mathrm{B} \$(11)=" 030507131618303\)
1110 LET E\＄（1コ）＝＂030507091011121 5れє182ดこ12さ2324．252627283032＂
1120 LET B事（13）＝＂ 93032＇
1130 LET B事（14）\(=" 020508101416171\) 821222324252627293032
1146 LET E事 \(\{15\}=" 610487081014202\) フ293032＂
1250 LET E事（25）＝＂020305101515172
 \(\begin{aligned} & 032 \\ & 1170 \\ & \text { LET } 5 ⿻ ⿱ ⿱ 一 口 ⺕ 亅 八 ~(18) ~\end{aligned}=" 020506052123242\) 5262728293032．
1280 LET 8 乐 \((29)=" 03082232 "\)
1190 LET E S \((20)=" 0405060722 \mathfrak{3 2 4 2}\) 5262728293031
1195 RETURN



 T U \(=80\)
1330 IF \(I=0\) RND \(J=0\) THEN LET \(U=1\) 20 1340 RETURN
1400 IF INKEY条 \(=\)＂M＂FND \(U s=20\) THE \(N\) LET \(U=U-20\)
1420 IF INKEY＇\(\ddagger=" N "\) AND \(U C=80\) THE N LET \(U=U+20\)
1430
1500 IF \(A \$\left(x, Y^{\prime}\right)=\cdots-\cdots\) THEN GOTO 16 10
1505 LET \(U=100\)
\(1 \frac{1}{2} 10\) LET T＝T＋ 16 REN RETURN
 1540 LET \(5 \pm T N T\) 仃－60＊M＋．5j 1550 PRINT AT 21,\(0 ;\)＂AU，LAP：＂；M；＂ 1560 IF \(5<10\) THEN PRINT＂\(\because\)＂；
 CEIT＂IF Tン105 AND T \(s=125\) THEN PR INT＂E－FAST＂ 1700 IF T \(\geqslant 125\) AND \(T<=175\) THEN PR INT＂C－AUERAGE＂
1720 IF T \(>275\) RND \(T<=200\) THEN PR INT＂D MEDIOCREN ITこO．IF T 1730 IF T＞22S THEN PRINT＂F－SN AIL
1750
STOP

\title{
Going Gregorian
}

> Want to know what day it is? Just get out your ZX81, fiddle with the 16K pack till it sits in place, connect up your recorder, wait a week or two while this program loads . . . and there you are.

The program is designed to print out the calendar of any specified year, accurately and neatly, or else just a particular month of interest, or alternatively to state on which day of the week any date falls.

It will work for any date after 1752 (when 11 days were added to correct the Roman Calendar).

This program will be especially pleasing to people with a line printer to print out a wall calendar. Just use COPY for each month displayed.

CALENDAR was also written by Jim Archer.


790 FRINT＂YOURE PULLI．NG MY LEG BOA NOW PUT IN A REAL DATE＂
800 FRINT
810 INPUT
815 PRINT U
820 PRINT＂MONTH？（NUMEER）．＂
835 PRINT P
337 IF \(P<1\) OR \(P>12\) OR \(U<1\) OR \(U\)＞ 31 OR \(\because\rangle I N T P\) THEN GOTO 750 840 PRINT＂Y＇ERR？
850 INPUT
855 PRINT 5
860 GOSUB 1000
870 GOSUE 1100
880 LET \(T=U \div 6-Q\)
890 LET \(Y=\) INT \((T-7 *\) INT \((T / 7)+.1\)
900 LET M号 \(={ }^{*}\) SUNDAY MONDAY T
UESDAY WEDNESDAYTHURSDAY FRIDAY SAT MRDAY
910 LET \(A=9 * \gamma+1\)
920 LET \(Z \$=H \$\{\)（A TO \(A+8\}\)
925 GOSUE 1050

dAS A＂；己韦
935 GOSUE 1050 MORE？
950 INPUT \(\omega 屯\)
950 IF W\＆\(=\cdots\) ．．THEN GOTO BOO
970 GOTO 9999
1000 LET \(\omega=5-2001\)
1010 LET \(X=8-(W+I N T(W / 4)-\) INT（ \(W\) 100）＋INT（W／400））
1020 LET \(Q=I N T(X-7 \pm I N T(X / 7)+.1\)
1030 IF \(Q=0\) THEN LET \(Q=\) ？

1040 RETURN
1050 PRINT
2060 PRINT
1070 RETURN
1106 IF P CS THEN GOTO 2180
1110 IF \(P=3\) OR \(P=11\) THEN LET \(Q=6\)
112の IF \(P=4\) OR \(P=7\) THEN LET \(Q=Q+\) 1

\section*{1130 \\ 1140 IF P＝5 THEN LET \(Q=0+6\) \\ 1250 IF \(P=8\) THEN LET \(Q=Q+5\) \\ 1160 IF \(P=9\) OR \(P=12\) THEN LET \(Q=\varpi\) \\ \({ }_{1}^{+2} 170\) IF \(5 / 4=\) INT \((5 / 4)\) THEN GOTO \\ 1200 \\ 1200 \\ \(\begin{array}{lllll}1180 & \text { IF } & P=3 \text { THEN } & \text { LET } & Q=Q+4 \\ 1190 & I F & Q>7 & \text { THEN } & \text { LET } \\ Q=Q-7\end{array}\)}

1195 RETURN
\(2 こ 00\) LET \(ロ=0-1\)
1こ10 GOTO 1190
1490 PRINT，＂THE NUMEER OF A MON
TH PLEASE＂＂MONTH TO SE PRINTED
NUMB
1510 INPUT
1515 PRINT P
1517 IF \(P<1\) QR \(P>12\) OR \(P<>\) INT \(P\)
THEN GOTO 1490
1520 PRINT＂OF THE YEAR？＊＊；
1530 INPUT
1535 PRINT
1540 GO5U5 1000
1550 LET R \(=\)＝
2560 GOTO 58
9999 STOP

\section*{Push your Sinclair to thelimit}


ZXCHESS II
A new improved version, with a faster response time, seven levels of play, analysis option and in addition a recommended move option. £9.95 Spectrum Chess.
£13.95
ZXCHESS I
Very popular machine code program, with six levels of play and an analysis option. Available for ZX81. £6.50

ZX 1 K CHESS
An incredible game in 1 K for only \(£ 2.95\)

\section*{ZX81 ARCADE GAMES}

\section*{\(\sum_{2 N E N N^{2}}^{2}\)}

GOBBLEMAN ETMETM
GOBBLEMAN - Escabe lrommunchry up the ghosts smerar to classicgarcade game \&3.95
NAMTIR RAIDERS - High speed quic groups of attackers £3.95
GALAXIANS - Swoopingattackers explosions and Dersonalised scoting £3.95

\section*{SNILITIES: WWr tindingandreplacement I5 .95 SPEC BUG - A 30 in 1 machine code 10013
disassembler for yout \(2 \times\) Spectrum \(\mathbf{~} 6.95\) ASSEMBLER - Full editor assembler and monitor giving an extremely powerful tool for writing and Spectrum Includes user manual \(\mathbf{£ 9} 95\) 2XBUG - A 30 in 1 machine codetoolant disassembier tor your \(2 \times 81\) £6.95}

\section*{LOW ADDITIONAL COST RAM PACKS}

JUST RELEASED ESPIONAGE
While on a reconnaisance mission your plane loses control and you are forced to land. Can you survive and escape with the island's hidden secret? \(\mathbf{£ 8 . 0 0}\)
PLANET OF DEATH (Adventure A)
You find yourself stranded on an inhabited alien planet Can you reach your ship and escape? \(£ 5.00\)
INCA CURSE Adventure B
in a jungle clearing you come across an ancient Inca temple, Yout mission to enter collect the treasure and escape alive. But beware! Includes a cassette save routine \(\mathbf{£ 6 . 0 0}\) SHIP OF DOOM IAdventure C
You are unavoidably drawn to an alien cruiser Can you reach the control room and tree yourself? Or will they get you first? includes a cassette save routine \(\mathbf{£ 7 . 0 0}\)

\section*{ZX FORTH}

Supplied on cassette with editor cassette user manuals and keyboard overlay. ZX Forth combines the simplicity of basic with the speed of machine code all for only \(£ 35.00\)

ALWAYS AHEAD WITH ZX81/SPECTRUM SOFTWARE
Cheques \& P.O. made payable to Artic Computing Limited
Please state whether your order is for \(2 \times 81\) or Spectrum



Great games packs for 16K ZX81 ... PACK 1

\section*{ASTRO-INVADERS}

\section*{Just look at these features ...}
... then look at the price!
- Superior machine code programming
- Rapid-firing with explosive on-screen kill effect
- High-scoring saucers - 54 aliens e accelerating atrack
- Destructable defence shields - On-screen kill count - High-score update
- Fast action space graphics
- a new dimension in ZX81 value

Astro-Invaders is yours on cassette for ONLY \(£ \mathbf{£} \mathbf{. 6 5}\) with FOUR BONUS GAMES:
ARCADE GRAND.PRIX - drive four levels of machine code skill PENALTY - defend your goal against the sharp-shooting ZX81 GOLF - judge shot-strength, angles, bunkers pius machine code insect fun with SWAT

\section*{PACK 2}

\section*{PLANET DEFENDER}
- blast aliens in planet orbit ...
- ultra-dynamic machine code action ehostile alien-waves - fast responsive controls: ship up/down, thrust, laser-bolt, and smart bomb ecomprehensive scoring - explosive graphics
explosive price
Planet Defender comes on cassette for ONLY £3.65 with machine code STORM-FIGHTERS - combat 5 fleets of swooping aliens as you blast through space, BREAKOUT (machine code) - race against the clock, plus GRAPHIC HANGMAN.
16 K ZX81 cassette packs 1 and 2 are \(£ 3.65\) each (post free in U.K.). Fast despatch from

John Prince
29 Brook Avenue, Levenshulme,
Manchester, M. 19

\section*{Edinburgh rules O.K.}

The Edinburgh \(\mathbf{Z X}\) Computer Show, organised by Gordon Hewit and the Edinburgh ZX Users Club, was a resounding success.

Over 1500 people attended the one day show, held in the entrance foyer to a sports stadium, stretched over a quarter of a mile, meaning a long trek was needed to get from one end to the other.
Exhibitors at the fair
included Logan Software, Haven Hardware, Artic Computing, Fuller Micro Systems, the local W H Smith store (which did a lot to help publicise the show, and appears a very good force in the city for the promotion of computer use), Richard Shepherd Software, JRS Software, Redditch Electronics, V\&H Computer Services ('What Can I Do with \(1 \mathrm{~K} ?^{\prime}\) ) and Video Software Ltd.


Club members provided a continuous demonstration of the capabilities of the ZX computers at the Edinburgh ZX Computer Show
lan Logan at the show with the book he wrote with Dr Frank O'Hara: 'Sinclair ZX81: ROM Disassembly, Part \(B^{\prime}\)


Show organiser, Gordon Hewit


Macronics demonstrated their 2x81 disc unit

Exhibitors were strung out along the concourse of a sports stadium

\section*{ZX News}

\title{
Getting Picturesque
}


Vogue cover model, Australian Sue Currier, now heads her own ZX soffware company in New York, Softsync, Inc. Sue was in London looking for the best of British software to take back to the States to sell to Timex/Sinclair 1000 owners. Among packages she most admired was Bugbytes 'Mazogs', and software from Quicksilva. Softsync's address is P.O. Box 480 , Murray Hill Station, New York, NY 10156, (212) 685-2080.

The Boston-based ZX-support company, Mindware, has also
been over here several times looking for good ZX software and other products to sell in America. Mindware Inc., can be contracted at 70 Boston Post Road,
Wayland, Massachusetts, 1617 358-7175. Both Mindware and Softsync are always on the lookout for good, new products which support the ZX computers and would welcome hearing from you if you have developed anything interesting. Both
companies are signing rights deals to distribute the products in America.

\title{
The Plot Thickens
}

\section*{If you want a simple way to make your ZX81 or Spectrum programs more exciting the products available from Print ' \(n\) ' Plotter will help you.}

Essentially they sell a pad called a "Print ' \(n\) ' Plotter Jotter" which has a grid of squares for PRINT AT locations and much smaller ones for using the PLOT commands on the ZX81. All you do is fill in the squares with the picture that you finally want to get on to your screen and then transfer it across. As their graphics publication shows, some remarkably effective displays can be produced doing this.

There is also a Print ' \(n\) ' Plotter film designed to be laid over a picture so you can trace over a picture before transferring it to the TV
screen. The graphics booklet, which is available for \(£ 1.50\), includes comprehensive instructions for making your programs look better and a complete listing for a rather exciting fruit machine program called Tutti Fruiti.

The booklet also gives advice on how to make programs which include a lot of numbers in the output more interesting. A way of scrolling test graphic displays is given and suggestions for graphic tape indexing.

The effectiveness of the 2X81 for graphic displays is perhaps best known when it is used to output to the printer rather than the TV screen. There is a very effective sample of a stuka bomber. The graphics programming book and the jotter and film are available from Print ' \(n\) ' Plotter, 19 Borough High Street, London SE1.

\title{
What People are Saying
}

\author{
As can be imagined, a number of publications in America have taken note of the \(\mathbf{~ X X 8 1 ~ a n d ~}\) Clive Sinclair.
}

In March 'Fortune' magazine described Clive as 'a shy, baldish, 41 year old, famous until now as an electronics wizard who kept getting his entrepreneurial wires crossed'.
"Like the hula hoop, Sinclair's micro marvel, dubbed the \(\mathbf{Z X 8 1}\), was an instant and overwhelming success... So popular has the machine proved that it has spawned over 150 new businesses from manufacturers of add-on hardware to publishers of fan magazines and software..." Nigel Searle, who was head of Sinclair Research in Boston Massachusetts, but is now in charge of the software division of Sinclair Research in England, told 'Fortune' magazine, "The Sinclair phenomenon is to enter those races that are worth winning but that no one else even knew were going on."
In May the American magazine 'Popular Computing', under the headline 'Big Power in a Small Package' said about the \(\mathrm{ZX8} 81\) "The innards of the ZX81 resemble an electronic watch... Despite obvious limitations the Sinclair ZX81 is well designed, very useful and a bargain... Although its current uses are limited to learning BASIC and a few small application programs the Z80A microprocessor gives the Sinclair the ability to achieve much more. By the end of the year there may be more \(\mathrm{ZX81}\) 's in the world than any other computer...'
'Small size and a low price do not have to restrict a computer's capabilities." That was the headline for a review of the ZX81 which appeared in Radio Electronics in April "It has always seemed that when someone said that something couldn't be done Sinclair has set out to do it so it was only natural that he brought out a
full featured 8 byte micro computer for under \(\$ 200\). When you first look at the ZX81 it looks like a very modest micro computer... yet its developer is quick to defend its capabilities.
When the new version of the ZX81 was introduced at a Boston press conference late last year Sinclair said it was "not a reduced support machine. The language it uses is complete". Radio Electronics concluded: "In the final analysis the \(Z \times 81\) is a building block unit. It is intended to train people who know little or nothing about computers, that is all it is intended to be."

At the end of last year 'Business Week' which described the ZX81 as a dirt cheap personal computer, ran a story on Sinclair under the headline 'A British Computer Hits it Big'. The article quotes a Benjamin M Rosen, who it describes as an industrywatcher, as saying "Sinclair's got a tiger by the tail. It's not a question of price performance, it's only a question of price. Sinclair has found a segment of the market that no one else has found. It seems to be a big one."
Les Solomon, writing in the March issue of 'Popular Electronics' says: "We were surprised at the amount of computing power that Sinclair packed into such a small computer (you can carry this little wonder in a jacket pocket without making a bulge). The BASIC is as good as anything around in small computers and has commands that others do not have.. The 164 page manual is one of the best we have seen... There are many typically British expressions, but most readers will readily understand them...
"The Sinclair \(\mathrm{ZX81} 81\) looks like a winner for those who want a low cost way to learn BASIC programming or a small, inexpensive yet powerful computer to start out on... The old saw about good things coming in small packages is true in the case of the Sinclair ZX81 ..."


Clive (can you spot him in the crowd at the start?) Sinclair was sponsor of the Cambridge halfmarathon during the Cambridge Festival. Every runner sported a number bearing the magic name. Clive, a veteran of several marathons fincluding the New
York marathon, twice) ran the full
distance, and arrived at the
finishing line looking little the
worse for wear.

\section*{Expressing an Interest}

\section*{The response to this} test-mailing was so good they decided to offer it to \(2,000,000\) of their card holders.

> At the end of last year in America the American Express Credit Card mailed a selected number of their card holders with a catalogue which

\section*{included the \(\mathrm{ZX81}\). \\ The response was} immediate and they had 2,000 orders by noon the first day after the offer was made. Margaret Bruzelius, who is the head of Sinclair's operation in America, said that since the offer was made they'd continued to sell at nearly 2,000 a day.

\section*{ZX News}

\title{
The £49.95 2X 81
}

\section*{The 2X81 price has been} cut, as was expected, from £69.95 to £49.95.

As well as the price cut, Clive has decided to push the ZX81 through retail outlets in addition to W H Smith.
Two other retail deals have been announced, and discussions with others are said to be 'at an advanced stage \({ }^{\prime}\),
Boot and Greens, a subsidiary of Debenhams, will sell the \(\mathrm{ZX81}\) and the associated 'official' software, and Prism Microcomputers will
sell the \(\mathrm{ZX8} 1\) as a wholesaler through high street computer shops.

This means that, for the first time, the ZX81 will be treated like nearly all other computers, and the numbers in use (believed to be around half a million) is sure to swell even more.

The \(\mathrm{ZX81}\) is being produced at a rate of 60,000 a month. It is not clear how many of those are destined to end up in America, miraculously transformed into 2 K Timex/Sinclair 1000's.

\title{
Sinclair gets the nod
}

\section*{After being excluded} from the BBC program and from the government's "Let's put a micro in every secondary school" scheme, no one could have blamed Clive and his gang for feeling that someone up there didn't like them.

Well, at last, someone up there (Maggie Thatcher, to be precise) has discovered what an amiable fellow our Clive is, and what a splendid computer he has built.
With much pomp, the Industry Minister, Kenneth Baker, announced that in a plan to ensure all 29,000 primary schools in the country had at least one microcomputer, three computers would be officially approved: the BBC microcomputer; the Research Machines 480Z; and the Sinclair Spectrum. The BBC machine and the 480 Z were the two approved for secondary schools.
The only fly in this particular


At the press conference when it was announced that the Spectrum was an 'approved micro for primary schools', Kenneth. Baker (right, Industry Minister, with Nigel Searle, from Sinclair Research.

\title{
Doodle-bug
}

\section*{Here's the perfect way to while away those long summer evenings - with a ZX81 doodle-bug written by Paul Morris of Alford, Lincolnshire.}
 screen with the arrow keys. This is not very unusual or original so far, but look what happens when you press a letter key. It is displayed on the screen where the cursor is

You can use this to produce interlocking patterns of words on the screen, to insult your favourite enemies, or to pass on messages.

Paul suggests another application - to build up crosswords, with any mistakes erased by backspacing with the cursor. With 1 K , you can use 17 lines of the screen.
```

10 LET AS =" "
20 LET }\textrm{X}=\textrm{VAL}"0\mathrm{ "
30 LET Y = X
40 PRINT AT Y, X;" inverse
+";AT Y,X;AS
50 LET'K=CODE INKEY\$
60 IFK=VAL "O" THEN
GO TO 40
70 IFK > = CODE " A"
THEN LET AS = CHR\$
K
80 IFK<CODE" A"
THEN LET AS = " "
90 X=X +(K=36)
=33)
100 LET
Y=Y+(K=34)-(K-
=35)
110 GOTO 40

```


\title{
Bargain Books!
}

Now you have a chance to buy the UK's best-selling ZX81 book at a reduced price.

Tim Hartnell, the editor of ZX Computing, has drawn wide praise for his book 'Getting Acquainted with your ZX81'. In its 128 pages you'll find over 80 programs - all ready to run on your ZX81.

The book is designed to lead you from first principles of programming right through to the point where you'll be writing your own games and other programs with real confidence. The book is usually \(£ 5.95\) but, as a special offer to readers of this magazine, it can be yours for \(£ 4.95\)

Programs in 'Getting Acquainted with your ZX81' include a complete DRAUGHTS game, ZOMBIES, STAR-BURST, BLACKJACK, ALIEN IMPLODERS and more. And you'll be pleased to know that nearly every program will run, without alteration, on the ZX Spectrum.

Save \(£ 1.00\) now on this vital addition to your ZX library.

THE MICRO CONNECTION, Dept. ZX, Unit 7, Littleton House, Littleton Road, Ashford, Middx.
I enclose \(£ 4.95\) for a copy of Tim Hartnell's book 'Getting Acquainted with your ZX81'

NAME \(\qquad\)
ADDRESS

Forget the games - make your computer work for you to carry out a thorough sort and analysis of FOOTBALL and HORSE RACING data by using a scientific approach to forecasting which involves logic, probability theories and statistics. You simply enter the details of all the Football league teams' performance into the Football Analysis program and it will offer a forecast of the results of matches played - DRAWS, HOMES and AWAYS for you to enter on your football coupon! The Horse Racing Analysis program will process the form and performance data of all horses in any race, and information about the race itself, and give a forecast of the result! Two amazing and well-documented programs to give endess interest and entertainment for all the family, PLUS the real possibility of getting a big win. Big programs that are easy to operate with step by step instructions. Require 16 K .

Please state ZX81 or SPECTRUM
FOOTBALL ANALYSIS \(\mathbf{£ 1 5 . 0 0}\) inclusive ( 16 K required) HORSE RACING ANALYSIS \(£ 15.00\) inclusive ( 16 K required) \(+£ 100\) overseas

Send cheque/P.O. to
Holly Products, Blackthorn House, Dukes Lane, Gerrards Cross, Bucks SL9 7JZ. Allow 28 days for delivery (normally 7-10 days) Every ZX user should have these valuable and educational programs

\section*{EVER BLOWN YOUR TOP WHEN SOMEONE PULLS THE PLUG WHILST YOU ARE PROGRAMMING?}

Upgrade your ZX computer system with the Microbyte SOFTWARE PROTECTION UNIT!

At last the nightmare of losing your ZX programme by mains power failure has been solved. Our unique black box simply plugs into your ZX80 or ZX81 and allows you time to correct the mains power supply before losing your software.
By using ultra high speed detection and switching circuitry, peak efficiency has been obtained to give a typical life of 3 hours emergency power for the basic \(\mathrm{ZX81}\) giving battery usage cycles in terms of years (dependent on the number and duration of emergency breakdowns).

Ideal for ZX81 plus. 16 K ram systems. OPENING OFFER \(£ 7.90\)
plus 70p carriage (inc. VAT). Make cheques payable to: MICROBYTE at 19 Worcester Close, Lichfield, Staffs.

Available around 10 days. Uses miniature batteries type AA (not supplied)

Makes an ideal present or simply a great addition to your ZX-81 Program Library.

\section*{DIGGLES KITCHEN}
(16K)
Simple Suppers to Gourmet Dinners

\section*{VOLUME 1}

50 pages of worldwide recipes. \(£ 4.99\) (inc. P\&P \& V AT )

\section*{VOLUME 2}

50 pages of European Recipes \(£ 4.99\) (inc. P\&P \& V.A.T)

\section*{VOLUME 3}

More volumes appearing soon to give you a full Program Library of Good Taste!

Please specity which volume(s) - mail order only. Send remittance to:

\section*{MICRO COMPUTER SOFTWARE} Unit D6, Pear Industrial Estate, Stockport Road, Lower Bredbury, Stockport SK6 2BP Tel: 061-494-2441

\section*{T(2) NTM OTS}

ZX Spectrum / ZX81
FOR ONE JOYSTICK AND
INTERFACE MODULE
BUILT, TESTED \& READY FOR USE
* NO SOLDERING, plugs into rear expansion port between ZX and Ram Pack, Printer or Microdrives.
* TWO JOYSTICKS connect via one interface module.
* NO SPECIAL PROGRAMMING, Joystick 1 operates as keys 5 to 8 through inkey instruction.
* IMMEDIATELY COMPATIBLE WITH ALL CURRENT SOFTWARE using arrow keys for movement.
* INTEGRAL 'FIRE' BUTTON

FREE 'Video Graffiti' listing + full instructions.


PERSONAL SOFTWARE SERVICES, 112 OUVER STREET, COVENTRY CV6 5FE.

\section*{ZX81 OWNERS} LOAD/SAVE 16K IN ONLY 29 SECS
- Verify successful saving of programs
- Compatible with your existing recorder
- No hardware modifications
- No extra power supply necessary
- No more wasted time waiting for programs to load or save - ideal for business users
All this is now possible with the incredible QSAVE
QSAVE COMES IN TWO PARTS
A. HARDWARE - Simply plug the QSAVE amplifier/filter between your existing recorder and the ZX 81 .
B. SOFTWARE - Load the QSAVE program before you load a cassette or key in a program and you can then save + reload a full 16K (including ramtop) in only 26 seconds i.e. a data transfer rate of \(4000+\) baud compared to only 250 on standard \(2 \times 81\).
QSAVE Also gives you a verify function just like the Spectrum which allows you to check that your programs save properly.
REVOLUTIONISE YOUR PROGRAMMING NOW FOR THE ALL INCLUSIVE PRICE OF ONLY \(£ 15.95\)
MAKE CHEQUES/P.O. PAYABLE TO PPS - FULL MONEY BACK GUARANTEE. DELIVERY 7-14 DAYS. WE ALSO HAVE THE WIDEST RANGE OF SOFTWARE AVAILABLE. Send 2 1st class stamps for fully detailed catalogue.

A retailer for Sinclair accessories in the Yorkshire/ Lancashire/ Humberside area.
We are situated close to the M1 \& M62 motorways and offering easy parking.
As well as a complete range of hard and software, our service department can repair, modify or fit a wide range of accessories.

For further details of these and many other services phone:

\section*{PHILIP COPLEY \\ on 0924272545}

Manufacturers of accessories looking for a retailer in our area are invited to contact us.

> SPECTRUM SOFTWARE/HARDWARE AVAILABLE NOW
> Hours of business:
> MONDAY to SATURDAY, 10am to 8pm

\title{
Getting things into order
}

\section*{This program is a useful one if you have to sort a list into order, or to produce an index for a book. There are two versions - one for the \(\mathbf{~ X X 8 1}\) and one for the \(\mathbf{Z X}\) Spectrum. The programs are by Tim Hartnell.}

The programs explain themselves as they run. The first, longer, listing is for the ZX81. It contains an error-checking routine, so that you can amend entries before making them a final part of the list to be sorted and printed.

\section*{SPECTRUM PROGRAM}


\section*{\(2 \times 81\) LISTING}


\title{
Zap! Pow! Boom!
}

\section*{The Psion software company got the big deal that everyone wanted - to become the 'official' Sinclair software supplier. How good is their material? Did they deserve the prize? Nick Pearce takes a look.}

Avid readers of the computer press, and visitors to the ZX81 counters of W H Smith, could hardly have failed to notice the extensive range of software recently released by Sinclair. I decided to look at six of the Psion cassettes.
The best of the six is, in my opinion, FLIGHT SIMULATION. This is a superb program which makes very good use of the power and the graphics of the 2X81.
You are the pilot of a small. high-performance aeroplane, which must be safely landed. You have a choice of three screen displays. The cockpit display shows the outside world (horizon) in the upper half of the screen, and cockpit instruments in the lower half, including power indicator altimeter, fuel guage, rate of climb indicator, air speed indicator and radio direction finding equipment.
The map shows the position of the runway, various radio beacons, the aeroplane, and an escarpment of hills to hinder your landing.
The third display is the visual approach which shows a full perspective view of the runway lights, together with some essential landing indicators.
This display is particularly effective and gives a convincing "pilot eye" view of the runway lights which cope admirably with banking and changes in speed or altitude.
The program's instructions are clear and concise. It is well worth getting acquainted with them before flying. I didn't, and consequently landed with the undercarriage up, and then made repeated attempts to land without using flaps, and therefore stalling, on my next few flights.
After a little practice, flyiing becomes easier, and full use can be made of the controls and facilities that were ignored during the panic of the first few flights.

An option at the start of the program allows the aspiring aviator to practice and perfect just the final runway approach and landing. If you find flying becomes too easy - which is most unlikely - you can introduce additional complexity by adding wind effects.
I have just two criticisms of FLIGHT SIMULATION. I would have liked to try my hand at taking-off, which is not possible with this program; the program permits the pilot to 'cheat' and 'fly' at ground level (zero altimeter reading) on the runway approach. Apart from these points, I could not fault this software. At \(£ 5.95\) it represents very good value for money.
Incidentally, a friend kindly lent me a \(12 \frac{1}{2} \mathrm{~K}\) flight simulation on his Tandy computer. In many respects I found the Psion simulation superior; both its visual effects and navigational facilities were more convincing, and it was more user-friendly. The Tandy version does have some additional features, however, including take-off and taxiing, and a wargame facility.
SPACE RAIDERS is a ZX81 version of the 'traditional' arcade game SPACE INVADERS in which you defend the earth from successive armies of invaders.
You have three lives (bases), and points are awarded for each raider ship hit. RAIDERS may be played at one of three speeds, normal, fast and super-fast, and I was told by an experienced player who had a go that it bears the most similarity to the arcade game when it is played in the superfast mode, which was too fast for me.
This program is similar to the many other invaders programs on the market, but has the bonus of a second game. BOMBER, on the \(B\) side.
In this 'blitz'-type game, you use bombs and rockets in an

attempt to raze a skyscraper city to the ground before your plane either crashes, or is knocked out by the blast from one of your own rockets. It is probably impossible to completely obliterate the city. I tried in vain several times at the slowest speed (and there are nine speeds altogether). Not a particularly inspired game, I thought, but one which makes a welcome change from invaders.

A nice finishing touch to

RAIDERS and BOMBER is the display at the end of each game which gives the score for that game and the highest score so far. In common with the rest of the software in this review, these programs are pretty well idiot proof, and I (even I) could not get either of them to crash.
Both these games perform well, and at \(£ 3.95\) for the two, this cassette is a reasonable buy.

Moving on to programs for
the more serious user, the Sinclair range includes VU FILE and VU CALC; programs intended for business or household management use.
VU FILE is a general purpose fling program. It is the sort of program you could use to catalogue your coin or stamp collection, keep a name and address list of friends, or for business, maintain a membership record for your club or society, or even keep a file record of all your \(\mathrm{Z} \times 81\) software!
The program is logically displayed, and easy to use. You start by 'laying out' the record, using headings, titles and graphics symbols. Anything entered during this record layout mode will be shown on each record on the file. You then move to another file, datafields, in which you define the positions on the record where you wish to set the information.
Data is entered into the file from the main command mode. As well as ENTER, the other main commands are ALTER, INFORM, FORWARD, BACK, RESET, ORDER, PRINT, COPY, SELECT, QUIT, LIST and DELETE. These provide a comprehensive file handling capability and can be implemented simply by keying in just the first letter of each command.
The commands are pretty much self-explanatory, but where there is any difficulty in comprehension, instructions give a fuller explanation.
The top of the screen gives continuous prompts to guide the user through the system.
Recorded on the \(B\) side of this cassette is an example of an application of VU FILE. It is called GAZETTEER, and is a file of records for every country in the world, giving the name of the country, its capital city, main languages and the like.

I made use of GAZETTEER to get a feel for the manipulative and interrogative power of the main program.
I was able to select and view any country in the file almost instantaneously; in well under a second. The record to be selected must be correctly defined. For example, the USA is filed as UNITED STATES OF AMERICA, and Russia as USSR. On the command LIST, each record in the file is displayed for about one and a half seconds.
By using the commands FORWARD and BACKWARD you can step through the file.

RESET sends you to the first record, ORDER defines the particular sequence required, ordering being defined by the leading alphanumeric characters of any of the data fields.

INFORM gives information on the status of the file. As an indication of the capacity of VU FILE, the GAZETTEER holds records on 152 countries, and uses \(96 \%\) of the space available in the program.

I think this software might be let down, not by the quality of the program itself (which I thought very high indeed), but by the inconvenience of loading the files from cassette. Few people would be prepared to wait for five minutes or more to load a file to obtain the address of a friend, or colleague. The \(2 \times 81\) really needs a disc operating system to be used effectively for this sort of work.

For business, or perhaps school or hobby use where a cassette can be loaded at the beginning of the day or session, and the \(2 \times 81\) can remain dedicated for some time, VU FILE on a cassette might be viable, although file space may quickly become a limitation.
Although the GAZETTEER effectively demonstrates the power and capacity of VU FILE, and while it clearly has initial novelty value, I think I would prefer to browse through a good atlas to get the kind of information the program contains.

VU FILE is, however, a good program, and does all that is claimed for it. The real question, however, is whether it would actually ever be used for all those filing jobs you've always meant to do.

The program certainly gave me a better understanding of how computers can be used for organising data, and the power a computer system can offer.
The discipline of attempting to catalogue on VU FILE that coin or stamp collection can itself be a worthwhile exercise, whether or not the computer eventually replaces your manual records.

VU CALC - a \(2 \times 81\) version of VISICALC - is a program for calculating and displaying tables of numbers and names. You start with an empty table of 'boxes' in a grid of 26 rows by 36 columns. Only a small part of the table can be displayed at one time, but you can quickly move around the table using the arrow keys.

Using simple commands, you can enter data into the boxes, and use formulae to link boxes, rows or columns, so that the computer can quickly calculate a complete table.
The power of the program lies in the ease and speed with which the table can be recalculated with altered data or different formulae.

There is a facility for saving the program on cassette, together with the completed or partially completed table, and it could easily be used for something like monthly accounting.

As an engineer, I was rather disappointed that this program only permits the four basic arithmetic operations \((+-/ *)\) to be carried out. Many engineering applications would require logarithmic and/or trigonometric functions as well. For this reason, I think VU CALC is more likely to be used as a tool for financial analysis, rather than engineering, scientific or statistical applications.

I had some difficulty assimilating the operating techniques required by this program, and I had to persevere to make it work. However, after rereading the instructions and some practice, I found I was able to operate the program quite efficiently.

Once the formulae and titles for a particular chart had been developed and entered, it is quite easy to enter the data into the chart from which the complete table can be calculated.

Some care needs to be taken in setting up the formulae, and entering data. For example, you must ensure that when operations are carried out, the resulting figures can be displayed without problems in the eight digit boxes.

VU CALC could be a useful tool for managing household accounts, although I am not sure it could compete with some of the dedicated financial control programs on the market which are designed for more sophisticated applications.

A lot of effort has gone into producing VU CALC, and it works well, again with considerable emphasis on userfriendly aspects. However, I feel its field of application is likely to be limited since it rather lies between two camps. It is neither a proper financial analysis program, nor is it ideally suited for serious use by the engineer or statistician.

For some household applica-
tions, VU CALC (like VU FILE). could prove a boom. You do need a certain amount of dedication to set up and maintain a computerised system, but the result is likely to be well worth the effort.

\section*{Had any good fantasies lately?}

Finally, on a lighter side, is FANTASY GAMES, which contains two 'adventure' programs.

On the A side of the cassette is PERILOUS SWAMP, which Psion recommend you tackle before you take on the more difficult SORCERER'S ISLAND on the B side.

When you enter the Perilous Swamp you must rescue a princess who has been captured by an evil wizard, and then return safely.

The game starts with a map showing your position, along with that of the princess, and the locations of several swamps in the rescue area.

The map, which can be called up at any stage, is different for each game. As you move, prompted by requests for compass directions, mosters and treasures are encountered, and you gain or lose points as you fight or bribe your way onwards.

This program has been well written and is quite entertaining. However, it is more of a guessing game than a true adventure program.

SORCERER'S ISLAND is a cross between a guessing game like Swamp, and more traditional adventures. You have been marooned on the island from which you must escape. A detailed map can be called up at will, although the screen goes blank for nearly a minute each time you do so.

You have a vocabulary of some ten words with which you tell the computer what you want to do. At each turn, your immediate surroundings are shown. Again, these take rather a long time to display.

As the game progresses, you are assailed by monsters, tempted by treasures, and have to deal with the other hazards that abound on the island.

There is supposed to be a grand sorcerer who can help you escape, but I have to admit I never managed to meet him.

Again, an entertaining game, althoughl did think it was spoilt to some extent by the length of time it took to create the screen displays. FANTASY GAMES costs \(£ 4.75\).

Printout from VU CALC


Cockpit display from FLIGHT SIMULATION



\title{
Navarone
}

\section*{ablaze!}

A few user-defined graphics here, a blob of colour there, a BEEP or two to keep the neighbours bemused, and Ken North of Ashford, creates this program to keep trigger fingers twitching


This program shows an aircraft flying from right to left above an anti-aircraft battery. The A.A. guns are firing at the aircraft, and the aircraft can drop bombs to destroy the guns. You drop a bomb by pressing the ' M ' key.

The A.A. fire reduces when youknock out a gun, but beware: the gunners are very accurate and have found your exact height, so you must knock a gun out very quickly to survive a round.

The main program runs from line 10 to 299, and the REMs explain what the other routines do.

The first section, lines 10 to 100 , sets up the screen. Line 10 cals the routine to set up the userdefined graphics. The data for these were converted to decimal numbers, and then stored in lines 1100 to 1120. These are then read and POKED into the appropriate character. The aircraft uses the graphic characters "A", " \(B\) " and " \(C\) ". The bomb is " \(D\) " and the gun is " \(E\) ".

Lines 20 and 30 set the screen colours to a white sky, green ground and a black border.

The CLS command, after changing PAPER colour is, as you probably know, important. If you don't CLS, the old paper colour remains, and only changes when you print something, which can
give you some strange and colourful (although unwanted) effects.

Lines 40 and 60 set up the variables.

Lines 70 to 90 find the gun positions, line 85 checks for three different positions, and line 100 prints the guns.

The " \(E\) " is a graphics " \(E\) " which will change to the gun after the first call to subroutine 1000 .

Lines 110 to 200 are the loop for the aircraft printed in line 120. The " \(A\) ". " \(B\) " and " \(C\) " are the graphics and, in line 100, the trailing space is to clear the last character as the aircraft moves across the screen. Line 140 checks for key " M " and sets a flag F1. If set, the program jumps to the 'bomb drop routine'.

If clear, a PAUSE is put in so that the program runs at the same speed as it does when a bomb is dropped.

The A.A. fire is controlled by line 170. The values can be changed to make the game easier or harder, but the 1.8 seemed a good compromise. Line 180 again puts in a PAUSE to keep the routine the same, whether the guns fire or not.

The variable HITS in line 190 checks to see if all three guns have
been destroyed, and if it finds that they have, increments the score, and then branches to clear the ground and print a new battery. The rest of the main program prints your score after you have lost all your aircraft.

The BOMB DROP routine prints the bomb if F1 is set. If the bomb hits the ground, F1 is reset for the next keypush.

The check, to see if you have hit a gun, uses the ATTR function in line 340. The ATTRibute call returns a value - in binary which depends on certain conditions:
The MSB (bit 7) is for FLASH, bit 6 is for BRIGHT, bits 5 to 3 for PAPER colour and bits 2 to 0 for INK colour.

In case of the gun, it is not flashing, and is normal brightness, so bits 7 and 6 are at zero. The PAPER is white, so bits 5 to 3 are all ones and the INK is red, so bit 1 is 1 and bits 2 and 0 are zero.

This gives a BINOO111010 which, when converted to decimal, gives 58 . If the program returns 58 at line 340 , it branches to 400 , the SCORE and BANG routine. This causes the guns to explode . . . and increments the
score.
The A.A. routine called by line 170 puts a flash on the screen, and checks if it coincides with the nose of the aircraft. If it does, it calls the SHOOTDOWN routine at line 600.

SHOOTDOWN makes the aircraft crash, flashing as it does so. The flash is confined to the plane, as it is locally defined in the PRINT statement, and therefore ends with the statement.

A PAUSE follows, to allow you to get your breath back, before the action starts again. You get six aircraft to try and destroy as many guns as you can.

If you want to make changes in colour, or to the A.A. fire, the only line you have to be careful of is 340 with the ATTR function call.

If you change the sky colour (PAPER), or the gun colour (INK), you will have to work out the corresponding ATTRibute, referring to page 116 of the manual.

Another thing to watch is whether the keyboard is in the C or L mode for the bombdrop. I've made the program run for the C mode, but line 140 could be changed to read both by changing it to: 140 IF INKEY \$ = 'M' OR INKEY \(\$=\) " \(m\) " THEN LET F1 \(=\) 1.

\section*{PROGRAM LISTING}

10 GO SUB \(10 \square 0\)

\section*{2Q BORDER Q: PAPER 7: CLS}

31: FRINT AT L, TO; 21: FOR


3 T0
T J: NEXT AT L, J; INK 4; "lil: NEX 40 LET TOTAL \(=0\) :

LET
GUNS \(=0\)
LE
T \(T=6\)
50 FOR \(G=0\) TO 5
55 PRINT AT 15 7: PAPER 4. INK
0; "PLANVES LEFT \(: ~ ; \frac{3}{3}-G\)
60 DIM Q\{3\}: LET \(H=5\) : LET FI=
LET HITS \(=0\)
70 FOR \(L=1\) TO 3
80 LET \(W=1 N T\) (RND \(\because 143+5\) : FER N
\(=1 \mathrm{TO}^{3}\)

```

(L): INK 2;*,** NEXT \&
110 FOR P=2\& TO O STEP -1
110 FOR P}=28, TOPO SNEP -1

```

```

 140 IF INKEY生="M". THE|N LEST F# = =1
 15Q IF FI=Q FHEN PALSE 3
    ```

```

 I7B IF RND* (5-HITS)>1.8 THEN GO
 T0 5a0
 180 pमUSE 2
 193 IF HITS =3 THEN LET TOTAL =TO
 TAL+1: GO TO 240
2OG NEXT P
210 PRINT AT 3,0;"
220 GOTO 110
240 FOR L=O TO 32: FRINT AT 2D,

```



\section*{MAIL ORDER PROTECTION SCHEME}

If you order goods from Mail Order Advertisers in this magazine and pay by post in advance of delivery, this publication will consider you for compensation if the advertiser should become insolvent or bankrupt, provided:
1. You have not received the goods or had your money returned; and
2. You write to the publisher of this publication explaining the position not earlier than 28 days from the day you sent your order and not later than 2 months from that day.

Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the advertiser has been declared bankrupt or insolvent to a limit of \(£ 1,800\) per annum for any one advertiser, so affected, and up to \(£ 5,400\) p.a. in respect of all insolvent advertisers. Claims may be paid for higher amounts, or when the above procedures have not been complied with, at the discretion of this publication, but we do not guarantee to do so in view of the need to set some limit to this commitment and to learn quickly of reader's difficulties.
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine (not, for example, payments made in response to catalogues, etc, received as a result of answering such advertisements):
CLASSIFIED ADVERTISEMENTS ARE EXCLUDED.


\section*{ZX Business Software.}

FOR SMALL BUSINESSES AND THE SELF EMPLOYED
Business Bank Account: this program enables you to make debits under 11 subheadings. Statements include totals of all subheadings. \(£ 8.75\)
Sales Day Book: for all your invoices, this program will enable you to prepare statements of outstanding invoices. Program will also calculate VAT. \(£ 8.75\)
Purchase Day Book: keeps a complete record of all your purchases under 11 subheadings. The program will also calculate and deduct VAT. £8.75
Quarterly Analysis: quarterly totals from Bank Account, Purchase and Sales programs can be analysed with this program. \(£ 4.75\)
All the programs have full search facilities and will enable you to prepare quarterly accounts for your VAT returns and annual accounts for your accountant These programs can also be used by companies not reg. for VAT.
Business Pack: incl. Bank Account, Sales and Purchase programs. £25
Please specify memory size when ordering for your ZX SPECTRUM or ZX 81
All prices include VAT, Post \& Packaging. For details send S.A.E. to

TRANSFORM LTD.,
41 Keats Ho., Porchester Mead, Beckenham, Kent. Tel: 01-658 1661

\section*{HILDERBAY LTD}

\section*{Professional Software}

\section*{48K Spectrum Software}

GOLD: popular adventure game now on 48 K Spectrum
PAYROLL: ( \(£ 25\) until further notice)
- Up to 50 employees on one file
- Meets all Inland Revenue tests
- Hourly, weekly, monthly
- Very easy to use
- All tax codes. NI. rates. pay levels
- Last-minute overtime, etc, no problem
- All data stored for next payday
- Sinclair or other printer may be used, but is not essential
- Payslips, list of payments, coin analysis.
- UNIQUE feature: can compute gross pay and deductions from net pay if desired
(Also Apple II Payroll, \(\mathbf{£ 6 9 : ~ Z X 8 1 ~ P a y r o l l , ~} £ \mathbf{£ 2 5}\) )
STOCK CONTROL: (£25 until further notice)
- Typical capacity 1500 stock lines
- FASTIl: locate, add, delete, line by name in under 2 seconds! Program loads in 1 minute, full list in 3
- Standard information: name, type code, supplier code, stock. re-order level, unit value, plus text information.
- Value of total stock of any line displayed
- Stock lists of all lines, or lines with the same supplier or type code. or under-stocked lines printed. Total value printed
(Also similar ZX81 Stock Control: 400 lines in \(16 \mathrm{~K}, 2000\) in \(48 \mathrm{~K} \mathbf{£ 2 5}\) )

\section*{ZX81 Software}

GOLD: now \(\mathbf{£ 5}\) (but the 64 K prize has been won)
PAYROLL, STOCK CONTROL as above
BEAMSCAN: BM \& SF diagrams for simply supported beam with up to 99 point, uniform, and tapered loads. £25
OPTIMAX: Maximise profit, minimise cost for mixing. resource allocation, and other problems. Up to 75 variables and constraints. \(£ 40\)
TIME LEDGER: A number of people are working at difterent rates for several clients. Sort it all out with this useful program! \(\mathbf{£ 1 5}\) CRITICAL PATH ANALYSIS: Solves 500 -activity network ( 16 K ) Durations, costs may then be modified £.15
BUDGET: Keep track of expenses under 50 headings over 12 months. Compare with budget. plot spending and overspending. etc. (two programs) £15
FINANCIAL PACK I: Mortgage; Loan (instalments); VAT. \(\mathbf{£ 8}\)

\section*{OTHER ITEMS}

LOADING AID: simple but useful device, makes loading microcomputers from tape easy!
£5.95
Tape recorder: simple unit suitable for \(2 \times 81\). Spectrum, etc. Tested and adjusted for computer use \(\quad £ 22+£ 2\) postage
Apple II Bookkeeper: keeps Petty Cash or other book. Introductory price: \(\mathbf{£ 3 5}\) Apple II Demo disc \(£ 13.80\)
Programs (except GOLD) have manuals ( 1 to 45 pages, A4) Prices include VAT, post free Access accepted C.OD. £2 extra Damaged tapes replaced for \(£ 1\) (faulty tapes free)

\section*{Hilderbay Ltd Professional Software \\ 8/10 Parkway Regents Park London NW1}

Tel: 01-485 1059 (now repaired) Telex: 22870
Dealer enquiries to 01-531 9833 (answering machine when not attended)

\title{
structured \\ programming
}

\title{
Although the art of programming is not a discipline with a long history, a consensus has grown up regarding the merits of writing programs in a structured way. In this article, Tim Hartnell briefly introduces some of the key ideas of structured programming.
}

You've probably gone through several stages as you develop your programming skills. After the first, brief struggle with BASIC, you suddenly discovered you could, after a fashion, write programs which ran. They may have looked pretty convoluted when you looked at their listings, and friends may have needed a detailed explanation from you before they knew what to do when running the programs, but at least they worked.

There comes a stage when you decide you're going to have to do better than that. But while you may be vaguely dissatisfied with your programs, you may not have much idea of how to go about becoming a better programmer. Here are a few guidelines which may help.

First, have a look at a printout of your listing. Programs linked by REM statements look better, and are easier to understand when you return to them after a break. Of course, shortage of memory may preclude the luxury of REM statements, but if you have the memory, you should include them. REM statements filled just with a line of asterisks can prove quite useful in separating each major section of the program. Examine any unconditional GOTO critically. Too many GOTOs leapfrogging over other parts of
the program show a lack of directed thinking, make programs run more slowly, and can make them almost impossible to decipher.

It is very good programming practice, though not the most memory-efficient way to go about writing a program, to have each of the main sections of the program (like the one which assigns the variables at the beginning of a run, the one which prints out the board, the one which works out who has won, and so on) in separate subroutines. The beginning of a board game program could well look like this:

10 REM *NAME OF PROGRAM \({ }^{-}\)
20

\section*{110 GOSUB 5000}

120 GOTO 50
As you can see, this ensures that the program actually cycles through a continuous loop over and over again, until the program terminates within the "CHECK IF GAME OVER"
subroutine. You can actually write a series of lines like these before you start writing anything else, and even before you know how you are going to actually perform some of the tasks within the subroutine.

Then you can write the program module by module, making sure that each module works before going onto the next. It is relatively easy to debug a program like this, and far simpler to keep an image of 'where everything is' when you do this, than when you just allow a program to, more or less, write itself.

The listing should be, then, as transparent as you can make it, both for your own present debugging, and for future understanding of what bit carries out what task. The output of the program should also look good. Again, if memory is not a problem, make sure the display is clear and uncluttered. Use blank PRINT lines to space it out, use rules of graphic symbols or whatever to break the screen up into logical sections and so on. Once you have a program working satisfactorily, it is worth spending extra time on the subroutine which controls the display. Here you'll appreciate again the advantage of having all the display handling in one subroutine, as it will be easy to know where to go to enhance

\section*{the display.}

Of course, as we live in a far from ideal world, it is unlikely that every single display command can be contained within one subroutine, but if you aim towards that end, it will make subsequent working upon the program much easier than it might be otherwise.

You can make the program even easier to read by assigning explicit variable names to the numbers which refer to the subroutines. By this I mean, in the case of the example given a little earlier, that you assign the value of 8000 to a variable called PRINTBOARD and 7000 to a variable called HUMANSMOVE. Then, the main loop will contain lines like GOSUB PRINTBOARD and GOSUB HUMANSMOVE so you know exactly what the subroutine call will generate. You'll see this in the program SQUASH which comes at the end of this article in which the things the program does include moving the ball (LET MOVEBALL = 550), assigning the variables at the beginning of the game (SETUP), and moving the bat (MOVEBAT). This makes programs very easy to follow.

The 'structured' approach outlined also helps you realise another aim of a good program - to do what you expected it to, every time you run it. You should write a program so that, even if


410
420
100)

436
450
46 G REM \(* * * * * * * * * *\)
 URN

490 RN

510
520
530


 \(L=-L\) L \(=-1\) \(M=-M\)

600
510
610 LET \(Y^{\prime}=Y+M\)
620 PRINT AT \(11+Y, 11+X ; 0\)
E2ᄅ IF \(\gamma<>8\) THEN RETURN
625
ORE
630 IF \(Y=3\) AND ABS \((E-\times)<=2\) THE N RETERN

540 PRINT "END OF GAME"
550 PAUSE 4E4
E70 CLS
ESO RUN
you are not present when a friend decides to run it for the first time, it performs as expected. This means not only, of course, that it is properly debugged, but that the instructions (which can be contained within the ASSIGN VARIABLES subroutine) are clear and complete.

The user prompts should be clear, so the human operator knows whether to enter a number, a series of numbers, a word, a date, a mixture of letters and numbers, and so on. The program has to assume that the operator is a complete idiot, and that no matter how clearly the instructions and/or user prompts are stated, he or she will attempt to do things the wrong way. A classic example of this is the entering of dates. 'Mug traps', as the routines to reject erroneous input from the operator are called, should be set up to reject a date being entered in a form which the computer cannot understand (such as the month before the day) or which is clearly wrong (such as entering the 32nd of February). You should ensure that, no matter what the operator does, the program does not crash or otherwise misbehave. This can happen if the program was expecting a numerical input, and the operator tried to enter a letter or a word, or hit ENTER RETURN
without entering anything at all. You can get around this by always allowing a string input, going back for another input if the empty string is entered, and taking the ASC, VAL or CODE of the input to turn it into numerical form.

Documentation is an area of programming which is often neglected. It is virtually essential for a program which is intended for publication, and most advisable for long programs which you've written for yourself. At the least, the documentation should include a list of variables, an explanation of the program structure (which should be easy to do if you've followed the 'modular' approach advised earlier), and brief instructions, especially if the program itself does not contain instructions. A sample run showing the kind of inputs, and the nature and layout of the program outputs, is also useful.

Your program should run as quickly as possible. Every time there is a subroutine or GOTO call, the computer must search through the whole program, line by line, to find the specified line number, so placing often used subroutines near the beginning of the program will speed them up fractionally. That is why the instructions are often placed right at the end. You do not want the computer to have to wade

SCORE IS 1554

through the initialisation and instruction lines every time it has been told to GOTO or GOSUB looking for the destination, or return line number.

Define often used variables first, so they will occupy the early slots in the variables store. The computer will search the store only until it finds the variable it wants, so there is no point in getting it to look at more entries than absolutely necessary.

Finally, and this is by far the best way to test a program you've written, call in a friend and sit him or her in front of the TV, and tell them to press RUN, without you saying anything, and just sit back and watch. If there is any hesitation, or the program hiccups, you have more work to do.

In summary, then:
* Use REM statements
- Make program listing neat and logical
* Use structured programming techniques, controlling the program through a loop of subroutine calls
- Examine unconditional GOTO commands critically
- Make output display attractive and clear
- Ensure all user prompts are clear
- Add 'mugtraps' on all user input
- Document your programs, even if you just make a list of variables
- Make your program run as quickly as possible
- Test programs by allowing someone unfamiliar with the program to run it

\title{
Keeping things in proportion
}

\section*{Tim Rogers of Richmond turns his programming skill to solving the problem of messy word output.}

This 'proportional spacing' program not only ensures that words are not split on the end of lines, but also 'pads out' each line in order to use all 32 characters across.

You just type in each word, pressing NEWLINE/ENTER instead of the space key between the words, and the text will be sent to the printer from time to time.

You can correct mistakes within individual words by using the 'less than' sign. When you've finished, press the 'greater than' sign, and all the remaining words will be printed.

This program should give a more 'professional' look to your text.

PRO POR TIO NALSP AC INGPROPOR TION AL SPACING PROPOR TIO NALS PACI NIGPRO PO RTION SPACIN PRO PORT IONAL SPAC ING PROPORT ION ALSP PROPORTIONAL SPACING PROPORTIONALSPACING P O R P OR PORP O RPORPORPOR PORPORPOR TION TION TIONAL SPACING PROPORTIONALPROPORTIONAL PROPORTI ONAL SPA CI N G PROPORT ION AL SPACING PR ORTION ALPORPRO ING SPACING PROPORTIONAL SPACING PROPORTIONAL SPACING PROPORTI ONAL SPACING PROTIONALS P A C



\title{
Surging away into space \\ Also from Tim Rogers comes this 1K 'arcade game'.
}
and thus the aim of the game is to stay on the screen as long as possible.

The lower down the screen you are, the more points you score.

The usual line used to detect when your ship is about to strike something (PEEK
\(16398+256^{*}\) PEEK 16399) has been replaced by a tiny machine code routine in the REM statement. This REM statement is seven bytes long (that is there are seven characters after the word REM). They are (in decimal) 42, 14, 64, 78, 6, 0 and 201. All
but CHR \(\$ 78\) can be entered from the keyboard, and so 78 has to be POKEd in at line 20. You move your ship to the right by pressing any key and it drifts to the left when you release your finger.

In this program, you are trying to avoid some very weird, slablike asteroids. Your ship has a shield which means you cannot get blown up by oncoming 'slabs'.

However, you are pushed up the screen by any slabs with which you come into contact,
rescossuccomen



```

1 REM E:RND?* TAN
5 LET H=1
10 POKE 16517,78
15 LET S =H-H
20 LET U=10
25 LET T=20
30 LET P=U
4| PRINT AT U,P;
5 0 ~ L E T ~ P = P - H / H * ~ (P > H / H)
60 LET P=P+(INKEY串く>**)*2*(P<T
6 5 SCROLL
70 PRINT AT U,P;

```
J

\title{
The ultimate SINCLAIR ZX 81 (16K) \& SPECTRUM DATABASE FILING SYSTEM
}

\author{
by DALE HUBBARD
}

Fed up with boring games - make your ZX81 work for you! The one you've been waiting for!!
Cassette based
Clear "menu" operation
Facilities include sort, search, list, delete, change, total numeric field, save and load file, line print, etc. Complete with demonstration file and full instruction/application leaflet.
Requires 16 K Ram pack.
Applications: Recipe file
Stamp/coin collections
Inventory Control
Employee Data
Record Collections
Magazine article catalogue
May be used for any application where fast access is required to stored information
Access accepted
Send cheque or P.O. or credit card number to: GEMINI MARKETING LTD.
9 Salterton Road, Exmouth, Devon EX8 2BR.
Or telephone us with your credit card order
on Exmouth (03952) 5832
DESPATCH BY RETURN
ONLY
£5.95 FULLY INCLUSIVE!

\section*{ZX SPECTRUM SOFTWARE}

SUPERDRAW16
List of features
- 16 K Spectrum graphics pack
- Full screen high resolution colour
- Moving cursor control
- Large alphabet facility
- Pictures saved on cassette
- Automatic "slide show option
- Menu driven, easy to operate crash proofed.
- Documented to usual high Video Software standard.
- Demonstration slide show
- Audio commentary on reverse of cassette

VIDEO SOFTWARE LTD.
Stone Lane, Kinver, Stourbridge, West Midlands DY7 6EQ.

Games to Play on your ZX Spectrum Martin Wren-Hilton
E2.50 ISBNO906812283

Computer Puzzles: For Spectrum and ZX81 lan Stewart \& Robin Jones
f2.50 ISBN 0906812275

Easy Programming for the ZX Spectrum Ian Stewart \& Robin Jones
e5.95
ISBN 0906812232

Further Programming for the ZX Spectrum Ian Stewart \& Robin Jones
e7.50 (approx)
ISBN 0906812240

Spectrum in Education Eric Deeson f6.50 (approx)

ISBN 090681229 ;

Easy Programming for the BBC Micro
Eric Deeson
£4.95 (spprox) ISBNO906812216

Further Programming for the BBC Micro Alan Thomas
E7.50 (spprox) ISBNO906812208

Machine Code and better Basic
Ian Stewart \& Robin Jones
with an educational program by Eric Deeson
E7.50 ISBN0906812186

The ZX81 Add-On Book
Martin Wren-Hilton
f6.50 ISBNO906812 194

PEEK, POKE, BYTE \& RAM:
Basic Programming for the ZX81
by Ian Stewart \& Robin Jones
E4.95 ISBN 0906812178

\title{
Shiva Publishing Limited
}

4 Church Lane, Nantwich, Cheshire CW5 5RQ Telephone: (0270) \(\mathbf{6 2 8 2 7 2}\)

ZX81 (16K) Educational Softare 'O' Levels next year?
Revise Maths and French using your ZX81
'O' LEVEL MATHS CASSETTE \(-3(16 \mathrm{~K})\) programs. Frist program teaches and tests, 2nd and 3rd programs are timed tests using generated questions from the ' \(O\) ' level sylabus. Help and explanations are given where appropriate
'O' LEVEL FRENCH CASSETTE - \(6(16 \mathrm{~K})\) programs. First 3 programs are teach and test grammar programs. Programs 4,5 and 6 are comprehensive vocabulary tests

HAVE FUN with an educational QUIZ - \(4(16 \mathrm{~K})\) programs on General Knowledge, Reasoning, English and Maths. All questions use RND function.

ALSO AVAILABLE
JUNIOR MATHS 1 (8-13 years) - Long Multiplication, Long Division Highest Common Factor, Lowest Common Multiple, Fractions 1 (-8-), Fractions 2 ( 8 \& ).
JUNIOR MATHS 2 (8.13 years) - Areas, Perimeters, Simple Equations, Percentages. Sets, Venn Diagrams.

JUNIOR ENGLISH 1 (8-13 years) - Meanings 1, Meanings 2 (harder), Parts of Speech, Proverbs, Similes. Anagrams.

JUNIOR ENGLISH 2 ( 8.13 years) - Idioms. Opposites 1. Opposites 2 (harder), Group Terms, Odd Word Out, Spellings.
ARITHMETIC FOR THE UNDER 8 's - Add, Subtract, Multiply, Divide. Allows for entry of units first. Numbers in large type. Balloon lifts off when enough sums correct.
\(€ 4.50\) per cassette or send sae for catalogue to:
ROSE CASSETTES
148 Widney Lane, Solihull West Midlands B91 3LH

Oui software has received good reviews in "Your Computer" and "Educational Computing" and is included in the MUSE Library of Educational Software.

\section*{ZX81 Spectirum 16K}

MANAGEMENT GAMES

\section*{AIRLINE}

Can you compete with British Airways? You must decide on the number of arcraft to operate. whether to buy or charter, whether to enter into a loan or a fuel contract and the levels of staffing and maintenance. Problems en. countered are tax demands, strikes. cancelled flights, hilacks and aircrat crashes

\section*{AUTOCHEF}

As MD of a Catering Company you must negotiate for leases. decide on menu prices. level of wages, advertising and dividends Each year you must predict the inflation rate You are also given options on consignments of wines and food and loan contracts. You will be made to resign if you are not successful There are 3 levels of difficulty

\section*{PRINT SHOP}

You own a small printing company and are required to decide on (a) the number and type of staff you employ and when to increase or reduce staft (b the amount and type of paper you stock (c) the week in which work is scheduled (d) the quotation for each. Are you an entrepreneur? Test yout business acumen to the limit! There are 3 levels of difficulty
These simulations are realistic and are not only fun to play but are educational The user will learn to interpret Trading Profit and Loss Accounts and Balance Sheets. Out programs are very comprehensive and fully utilises the memory ALL PROGRAMS INCLUDE DETAILED INSTRUCTIONS
£4.75 for one. £8.00 for any fwo or £12 for three Please state computer fype and send cheque to

DEPT Z
CASES COMPUTER SIMULATIONS
14 Langton Way
London SE3 7 TL.

\title{
High security \\ \\ Paul Holmes from Sutton Coldfield, \\ \\ Paul Holmes from Sutton Coldfield, author of the J.R.S. Software author of the J.R.S. Software "Graphics Tool Kit", brings us a couple "Graphics Tool Kit", brings us a couple of clever games for the 16K ZX81.
} of clever games for the 16K ZX81.
}



\title{
Magic Dollar Seeds
}

In this game，you are trying to escape the computer，which behaves in a fairly intelligent way to try and trap you．As you move around the screen，you leave a trail of seeds．Moving back onto a seed causes four dollar signs to appear around you．Moving onto a dollar sign adds \(\$ 10\) onto your score．You move by pressing the \(5,6,7\) or 8 keys，moving in the direction of the arrows on those keys．

The snag in all this is that each time you move，the computer digs two holes（inverse letter 0）to trap you．If you become totally enclos－ ed by Os，you are dead．However， you have one let out．If you＇ve managed to accumulate \(\$ 40\) or more，you can press the 9 key， and four dollar signs will appear around you，so the game can con－ tinue．However，your tally will be diminished by \(\$ 40\) ，so the game can continue for some time．

B：0008．日

590． \(8.000^{\circ}\)



 gor a



BRITAIN'S LEADING EXHIBITION FOR ELECTRONICS ENTHUSIASTS
 10-14 NOVEMBER 1982 at: ROYAL HORTICULTURAL SOCIETY'S NEW HALL GREYCOAT ST, WESTMINSTER, LONDON SW1.

* COMPUTERS
* AUDIO
* RADIO
* MUSIC
* MAGAZINES SPECMA
For the fifth consecutive year BREADBOARD is back with even more to offer electronics enthusiasts.
This is the best opportunity to update yourself on all the latest equipment, ideas and developments.
COME AND SEE THEM IN ACTION.
Book your tickets now at this special low rate.

 * LOGIC
* TEST GEAR
\(\star\) C.B.
* GAMES
* BOOKS

\title{
MORE \\ COMPREHENSIVE THAN EVER BEFORE:
}

\section*{* KITS}
* COMPONENTS
* DEMONSTRATIONS
* LECTURES
* SPECIAL OFFERS

\title{
Personal SOTFMARE
}

The second issue of our quarterly publication, Personal Software, is dedicated to the subject of computer graphics. As well as being an essential element in games software, the graphics facilities of many systems can be used to enhance the display of a whole variety of information. The magazine will provide a valuable source of program graphics techniques and a large reference section.
Included among the programs in the publication will be games, simulations and a variety of utility routines to enable you to make better use of whatever graphics facilities your system is equipped with.

The reference section collects together all our Graphic Details and provides a quick reference to many of all the graphics character sets available. This is joined by a completely new Graphics Directory which lists vital facts and figures on over 30 popular machines. With the aid of these two sets of information, converting graphics from one system to another will become a whole lot easier!
Personal Software will be on sale at your local newsagent from Friday 20th September at \(£ 1.95\) or you can order directly from us at \(£ 7.80\) per annum or \(£ 1.95\) per copy.


\title{
Mastering machine code on your Spectrum
}

\title{
Toni Baker, author of 'Mastering Machine Code on Your ZX81', turns her attention to the spectrum with this article, the first in a series designed to take you through machine code from its very beginnings to its ultimate conclusions.
}

Inside the Spectrum is a tiny little black box mystically referred to as a "Z80A". In fact the Z80A is the only part of the whole computer that actually does any thinking. Toput it another way, the Z80A is the computer. The ROM is not a computer - the ROM just contains a computer program. The Z80A speaks a language we call MACHINE CODE, It does not speak BASIC. When you RUN a BASIC program what's really happening is that the Z8OA is running a program in the ROM which tells it to look at what's written down in the RAM and then take appropriate action.

Machine code has variables just like in BASIC, but they're not quite as flexible. The registers are called A, B, C, D, E, H, and L, and they can only store integers from 0 to 255. It's easier to work in hexadecimal so I'll do that from the start - 00 means 0 and FF means 255 . In general two symbols (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, \(B, C, D, E\) or \(F\) ) written next to each other means sixteen times the first digit, plus the second digit - leading zeroes are therefore optional - however DON'T waste your time converting things back to decimal all the time - you don't need to. 5A is obviously bigger than 3E because 5 is bigger than 3. In the same way D7 is a bigger number than AA.

It is not necessary to change the numbers into decimal first - it
is better to get a kind of "feel" for the size of a number in hex without actually knowing what is is. After all, that's all we do in decimal isn't it? I bet you can't imagine a pile of (exactly) seventy three pennies.

A variable in machine code can therefore hold any number between 00 and FF. A machine code variable is called a REGISTER. There are no error traps in machine code, and so if you try to add up two numbers whose sum is more than FF you will get the wrong answer (in actual fact it will be 100 (hex) less than the real answer) - the last two digits will be the only ones that count. Take a look at this little segment of machine code:
LD A,9A-This is like a LET statement. Register \(A\) now holds the number 9 A .
ADD A,88-In machine code you can only do one thing at a time you cannot, eg. say LD A,9A +88 as you could in BASIC. What value does the \(A\) register now contain? The answer is 22 . Try to do the adding up in hex: \(A\) plus 8 equals 2 carry 1;9 plus 8 plus the carry is also 2 carry 1 ; this carry is "lost".

Registers can also be used in pairs. The only combinations allowed are \(\mathrm{BC}, \mathrm{DE}\), and HL . If B contains 61 and C contains A 7 then we say that \(B C\) contains 61A7. This is a four digit hex-


Figure 1. HEXLD.
adecimal number. Its size is intuitively just a bit bigger than 6000 , and a lot less than 7000 . Similarly, if HL contains 1234 we say that H contains 12 and L contains 34.

\section*{How do we actually USE machine code?}

When the ZX83 comes out, hopefully there will be a few buttons marked with machine code instructions. Until that happens we unfortunately have to do some translating. Each machine code instruction has a number - a sort of index. Instruction number one is LD BC, - something like a LET statement in BASIC. All the Z80A needs is a list of numbers. Whenever it comes across the number 01 it knows it has to carry out the operation LD BC., It also of course expects a four digit number next so that it knows what to load BC with. This index number is called a HEX CODE.

The words we use for the instructions are sometimes called OP CODES (Operation Codes). For every OPcode there is a HEXcode, and for every HEXcode there is an OPcode.

The computer needs the HEXcodes in its programs. Humans on the other hand find it easier to use the OPcodes. When writing down a machine code program on a piece of paper we usually then write BOTH versions next to each other - like this: C9 Here CO is HEX RET Here C9 is HEXcode which the computer will understand. RET is our way of writing it. RET means RETURN; either "Return to BASIC" as we shall use very shortly, or "Return from a subroutine" which I shall cover in a later article.
Every machine code program you write must end with a RET instruction.

\section*{The meaning of USR}

USR is a function in BASIC - it's very much like a cross between a GOSUB statement and user defined (numerical) function. It looks very much like a function in appearance: USR \(X\) has the same "shape" as SIN X or INT \(X\), and can be used in exactly the same circumstances. But if SIN \(X\) equals the height of a sine wave at position X , and if \(\operatorname{INT} \mathrm{X}\) equals X with all of its decimals banished, what number does USR \(X\) give us? ANSWER: USR \(X\) gives us the value of the \(B C\) registerl \(A\) machine code program is run every time USR is used, and the number of variable or whatever after the word USR must be the address of the start of a program written in machine code. For example, consider this machine code program:
010000
LDBC,0000
C9
RET
If X was the address of the "01" in the above, then what number would USR \(X\) give us? RET, remember, means return to BASIC, and so BC ends up as zero. In this case USR X would give us a value of zero, so PRINT USR \(X\) would print \(O\), and LET \(Y=\) USR \(X\) would assign \(Y\) with zero, and so on.

Our next problem is how do we get the machine code into the computer in the first place? The only way to do it is with a BASIC program. Take a look at the program in Fig. 1. It's called HEXLD, and I shall explain what it does and how it works.

The first line is a user-defined function which turns a string character into a number. Its effect is to turn " 0 " into 0 , " 1 " into 1 . and so on until " 9 " which becomes 9. In addition " A " becomes ten, " \(B\) " becomes eleven, and so on up to " \(F\) " which becomes fifteen. Small letters are

\((55024)-F N\) F \((55015)+1\)
43Q UERIFY' "'"

\(45 Q\)
\(4 E Q\)
BORIFY ". "ODER Q INE INK
HSH Q: ERIGHT Q
4フQ CLEFF E5Q2
4BQ LOAD ...ODEE LOAD ....CORE
STOF
SQQ FRINT "REEIN
512 GCI SLIE EQRI
\(5 己 Q\) RANDOMIZE USR ESEG4
530 STOP
EZQ FRINT "REFLFCE
510 E GUE 330

Fig 2 （Above）The listing of HEXLD 3



 0
\(\vdots\)
－
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \％ & & \(\pi\) & ， & \％ & \(\wedge\) & ₹ & 10 & 0 & \(\wedge\) & \＃： \\
\hline \multicolumn{11}{|l|}{\begin{tabular}{l}
 \\

\end{tabular}} \\
\hline a 100 00010 い！い！ & & & & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
 \\
 \\

\end{tabular}} \\
\hline \\
\hline \\
\hline
\end{tabular}
Fig 3 Cont. The code for HEXLD 3.
also taken into account and so " \(a\) " also becomes ten, and so on up to " \(f\) " which gives fifteen just as if it were a capital. The rest of the program is your HEX LOADER.

To use the program type RUN, then input a (decimal) address. Input 24576 here (for no other reason than the fact that in hex 24576 is written as 6000). Now all you need to type in is your machine code. Type in "010000" and then "C9". To

* \(\quad\) 汭 \(\quad\) * of \(\quad\) r
stop the program type in just a newline - this will cause error code 3. You now have a machine code program. Type PRINT USR 24576 to see if it gives zero as it should. If you want to see what you're doing change line 40 to read IF a\$ = "'" THEN INPUT a\$: PRINT a\$

\section*{For advanced programmers. . .}

Figures 2 and 3 give a machine
The arrangement of the variables and machine code routines of
HEXLD 3
\begin{tabular}{|c|c|c|c|}
\hline 16K & 48K & & \\
\hline 7DF8 & FDF8 & BEGIN & Points to the first byte of the subject program. \\
\hline 7DFA & FDFA & ADDRESS & I \\
\hline 7DFC & FDFC & ADD2 & |Parameters used by HEXLD 3. \\
\hline 7DFE & FDFE & ADD3 & , \\
\hline 7E00 & FEOO & LIMIT & Points to the first byte after the subject program. \\
\hline 7EO2 & FEO2 & HPRINT & Subroutine to print the contents of the A register in hexadecimal. \\
\hline 7E1F & FE1F & HLIST & Lists subject program in hexadecimal. \\
\hline 7E55 & FE55 & INSERT & Inserts additional bytes into subject program. \\
\hline \(7 E 80\) & FE80 & WRITE & Overwrites subject program with new code. \\
\hline 7ED3 & FED3 & DELETE & Deletes bytes from subject program. \\
\hline 7EFO & FEFO & BEGINMC & Sets BEGIN and LIMIT ready for creating new subject program. \\
\hline 7EFB & FEFB & HCOPY & Overwrites subject program with bytes copied from elsewhere. \\
\hline 7F20 & FF2O & BREAKP & Break point routine. \\
\hline 7F58 & FF58 & & Next spare byte - User defined graphics may begin \\
\hline Fig. 4 & & & here. \\
\hline
\end{tabular}
code editing program called HEX LD 3. You can load it into the com puter using HEXLD as above. Its purpose is to allow you to construct and edit other programs in machine code. To avoid confusion the hex given in Fig. 3 is called the "object program" - the machine code you will use it to edit is referred to as the "subject program". You should not attempt to use HEXLD 3 to edit itself.
if you are using a 16 K
machine instead of a 48 K machine you must subtract 32768 from each address used in the BASIC, and you must change each address referred to in the machine code which begins with F into the corresponding address beginning with 7.

The features of the program are as follows:

Fig. 4

Points to the first byte of the subject program.

Parameters used by HEXLD 3.

Points to the first byte after ect program. tents of the A register in hexadecimal.
Lists subject program in Inserts additional bytes into subject program.
verwrites subject program with new code.
Deletes bytes from subject program.
ready or creating new subject program.
gram with bytes copied from where.
Break point routine. defined graphics may begin here.

\begin{abstract}
\(F=21\) \(=F Q 2\)
\(=F Q 3\)
\end{abstract}
 \(R\)
\(R\)
\(M\)
\(*\)
\(R\)
\(B\)



 \(>\)
\(\times\) 7
3
3 \(x\)
\(z\)
\(x\)
\(\varepsilon\)




RUN
RUN 100
RUN 200 allows you to insert bytes of machine code between existing bytes.
RUN 300 allows you to delete bytes of machine code, closing up the gap which they occupied.
RUN 400 SAVEs first the BASIC, then the object program, then the subject program, then verifies all three.
RUN 500 Initially assigns variables used by this program. RUN 500 must be used only if you are creating a new program from scratch.
RUN 600 Equivalent to DELETE followed by INSERT at the same address.
RUN 700 allows you to RUN machine code from any address.
RUN 800 allows you to copy blocks of machine code from one address to another.
FN H(string) changes hex to decimal, eg FNH("OO2A") = 42
FNH\$ changes decimal to hex, eg FNH\$(42) = "OO2A"
(number)
FNP laddress equivalent to PEEK (address) \(+256^{*}\) PEEK (address +1 ) \(\times\)

Iam sorry if there is insufficient space to hist the machine code for HEXLD 3 in full. You may like to translate it for yourself as an excercise if you are sufficiently masochistic.

- Improve your ZX BASIC programming skills with this new book.
- Assumes knowledge of the Sinclair ZX81 BASIC manual only.
- Covers many techniques for speed, space saving and "good practice".
- Illustrated by over 25 useful and enjoyable programs, demonstrating the rules described, while making the most effective use of 1 K .
- Many of the principles listed are of more general application, most particularly to ZX SPECTRUM Basic.
- Send \(\mathbf{5} 5\) to:

> Ivor Killerbite,
> 10, Elson Road,
> Formby,
> Liverpool L37 2EG

\section*{ZX81 16K SPECTRUM RAM Cassettes}

\section*{Games to Test your Skills \& Tactics}
"VERY NASTY MOUNTAIN and NASTY INVADERS...are both very well written"; "I am thoroughly pleased with the goods": Client, London "Thanks for your very good VERY NASTY MOUNTAIN": M.F. Harold, Guildford, Sy.
"NASTY INVADERS...VERY NASTY MOUNTAIN : with no loading problems at all and the literature you included, will certainly purchase from you again": N.D.H., Huddersfield
TI am writing to congratulate you on the excellent VERY NASTY MOUNTAIN. I am also pleased with the quick delivery": R.Massingham, Batley. W. Yorks.
"I like NASTY INVADERS...the graphics are excellent; VERY NASTY MOUNTAIN is also an excellent game. These are two of the best games I have for my ZX81.": Michael B. McAllister, Lakenheath, Suffolk
NASTY INVADERS: Get them before your Bosses get youl
\(£ 4.95\)
A 20 minute plus Action-Packed Game. You are on duty in the Defence Radar Centre. An invasion starts. Your task is to prevent the Enemy from landing. But you have problems: not only do you have to stop the invaders making repairs to their craft, but there could be personnel trouble tool Good control is rewarded, but errors are penalised.
Don't despair - Rank Has its Privileges!!
NASTY MOUNTAIN: Solve the Clues if you want to Escape!
£4.95 You are leading an expedition and come to an impassable mountain range. It looks like a long detour until an old goat-herd announces that there is an opening in the rocks into which the occasional animal wanders, but they never re-appear..... See if you can solve the mysteries of Nasty Mountain and continue on your travels. Whether you succeed or fail, you can always try again - but somehow its not quite the same as beforel

VERY NASTY MOUNTAIN: But don't CHEAT or you will pay for it! £6.95 An advanced version of the Nasty Mountain Game with 16 Levels of Play. Practice Makes Perfect - but the more clues you solve, the more your tactics are tested!

\section*{Justify Your ZX 81 As A Business Expense}

PETTY CASH/VAT: Know where your Money wentl £10.00 Enter Date, Narrative and Gross Expenditure for each Cash Purchase. Analyses into 20 Sub-Headings and 13 Main -Headings and gives Gross, VAT, Net and Exempt Subtotals and Totals. Its so good, we use it ourselves.
VAT BOOK INPUTS: Written for the Small Business \& Sole Trader £ 12.00 As the Petty Cash/VAT Program, but with the facility to add in your Cheque and Standing Order Items to give Inputs Bottom Line Totals.
```

CHEQUES/P.O.s TO:- GILTROLE LTD., DEPT, ZXC,

```
P.O. BOX 50, RUGBY, WARKS. CV 21 4DH

\section*{\(\mathrm{s} C \mathrm{l} \mathrm{s}\) \\  \\ : STUDY PACKS : \\ STARTING YOUR 'O' LEVEL OR CSE COURSES}

\author{
"I found the whole package a very good revision aid" ZX Computing, Aug/Sept. Software Review. \\ 1. Superb book of revision notes. \\ 2. Programs of problems using random data - different each time. Answers given. \\ 3. Program - Hints on "How to Revise \\ 4. Paragraphs of multiple choice questions
}

PHYSICS "O
CHEMISTRY "O/CSE"
\(\mathbf{8 7 . 5 0}\) each
MATHS PART I "O"
\(£ 5.50\)

> : JUNIOR SCHOOL PROGRAMS : "ASTROMATHS" - Decimals, Fractions, Percentages, "JUNGLEMATHS" - Addition, Subtraction, Multiplication, Division "MAGIC SPELL" - Versatile spelling test program. Make learning fun - Excellent use of graphics £5. each \begin{tabular}{l}  Teachers "MARKBOOK" - End the drugery of adding up \\ marks, calculating set positions etc. \\ \hline COMPUTER STUDIES Suitable tor students up to "O" level. \\ Understard Logic Gates; Boolean Algebra: Truth Tables and \\ Karnaugh Maps. Excellent documentation. Invaluable aid for \\ learning computer science \\ limams \end{tabular}

Please add 50p for P8P. 5 Minster Gardens. Newt verpe, Eastwood. Notts. All programs available from "MICROWARE", Leicester. Most programs also available for Spectrum and BBC

The specialists in intemal plug-in memories for \(2 \times\) computers announce:

\section*{80K SPECTRUM}
now atrainable for the price of a 48 K m
our SPBO low-power Sinclair look -alle e
Functionally identical to the Sinclair 32 K internal plug-in expansion but with double the copacity ( 64 K ) the SP80 plugs into the sockets provided on the 16 K SPECTRUM by Sinclair for his 32 K expansion board. Instructions to our usual high standard makes fitting very simple indeed.
no way interferes with Sincteir add-ons - 2X Printer, RS232 interface.
Microdrive
New low prices on our highly successful internal memories for \(2 \times 81\)
To: East London Robotics. 'Finlandia House', 14 Darwell Close, LONDON E6 4BT

\section*{Item}

CHIPSWITCH kit doubles your \(2 \times 81\) memory to \begin{tabular}{l} 
Item \\
Price \\
\hline
\end{tabular}
CHIPSWITCH kit doubles your \(2 \times 81\) memory to 2 K . (this kit requires soldering)
INCREMENTAL Internal 2 K plug-in memor 4.70

INCREMENTAL internal \(2 K\) plug-in mamory
17.75

Additional 2 K chips for above (HM6116P-3).
4.50

MAXIMEM 64K internal plug-in memory for \(2 \times 81\).
SPBO 64 K internal plug-in memory extensionfor \(2 \times\) SPECTRUM giving 80 K of user RAM. SPBo Kit version with full instructions.

SP80 fitting service (price includes excess
9.00

PGP).
Postege and Packing TOTAL f
0.45

Telephone enquiries on 014713308 .
All prices already include VAT.
Plesse tick if you require a VAT receipt.
Refunds less f 1.50 handling on all Items returned within 14 deys of recelpt. Send stamped addressed anvelope plus additional \(12 \%\) p stamp for catalogue

Cheque/Postal Order payable to: EAST LONDON ROBOTICS f
Name: Mr/Mrs/Miss
Adrress:

STOP PAESSIII Transfer all your 2X81 BASIC and Machine code programs and data onto your SPECTRUM in minutes with our new SLOWLOADER avallable soonll

\title{
The Secret of LIFE \\ We set you a problem，and show one way to solve it
}
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& 10 \\
& 20 \\
& 30 \\
& 40 \\
& 50 \\
& 60 \\
& 70 \\
& 80 \\
& 90
\end{aligned}
\] & \begin{tabular}{l}
FAST \\
DIM EiS： \\
 \\
FOR \(A=1\) TO 8 \\
LET E \((A)=C O D E H \$(H)-11\) \\
NEXT A \\
DIH A（220） \\
－IM L（120） \\
LET，\(\overline{\text { A }}\) i \(=" 54,55,65,75,76,45,5\)
\end{tabular} \\
\hline 100 & FOR \(A=1\) TO LEN A事 ETEP 3 \\
\hline 110 &  \\
\hline 120 & LET L（UAL A末（R TO P＋1））\(=1\) \\
\hline 130 & NEXT A \\
\hline 140 & LET GENERATION＝0 \\
\hline 245 & SLON \\
\hline 150 & GOTO 310 \\
\hline 160 & LET GENERATION＝GENERATION +1 \\
\hline 170 & FOR U＝，TO 3 \\
\hline 180 & FOR \(\mathrm{B}=1\) TO \({ }^{\text {P }}\) \\
\hline 190 & LET \(F=0+10 \div 3+2\) \\
\hline 200 & LET \(H=0\) \\
\hline 210 & FDR T＝1 TO B \\
\hline 220 & LET \(H=H+A(F+E\)（T）） \\
\hline 230 & NEXT T \\
\hline 240 & IF \(A(F)=1\) AND \(H<>3\) AND \(H<>2\) \\
\hline THEN & LET L（F）＝0 \\
\hline 250 & IF \(A(F)=0\) AND \(H=3\) THEN LET \\
\hline \(L(F)=\) & \(=1\) \\
\hline \(2 \in\) & NEXT E \\
\hline 270 & NEXT U \\
\hline 275 & Stom \\
\hline 280 & FOF M＝1 TO 100 \\
\hline 290 & LET \(Q(M)=1(M)\) \\
\hline 300 & NEXT M \\
\hline 310 & FRINT AT 5，0； \\
\hline 320 & FOR \(U=0\) TO 9 \\
\hline 330 & PRINT TRE 3 ； \\
\hline 340 & FOR \(B=0\) TO \\
\hline 350 & LET F \(=3+10 \times 5+1\) \\
\hline 360 & PRINT CHR生 A （F）；\(\cdot \cdot \cdots\) ； \\
\hline 370 & NEXT E \\
\hline 380 & NEXT U \({ }^{\text {PR }} 3,10 \cdot \cdot \cdot \mathrm{CENEARTION}\) \\
\hline 390 & PRINT AT 3，10；＂GENERATION \\
\hline & FOR \\
\hline 400 & FOR \(9=1\) TO iDQ \\
\hline 420 & FEST \\
\hline 430 & GOTO 260 \\
\hline
\end{tabular}

The game of LIFE was invented by John Conway of Cambridge University in October，1970．It simulates the birth，death and growth of cells in a closed colony． Before the state of a cell for the＇next generation＇（a genera－ tion is a complete check，and reprint of the grid upon which the colony lives）is determined，it must be compared with the eight surrounding cells．If there are two or three occupied cells around the one being checked，and the one being checked is occupied，there is no change；it survives till the next generation．If there are three and only three occupied cells，and the cell being checked is empty，a cell is＇born＇there in the next
generation．If there are four or more neighbours，the cell being checked＇dies＇，that is，is emptied in the next generation．

That is almost all the informa－ tion you need to construct a game of LIFE from first principles．There is just one more thing－the rules are applied all over the grid at once，so you need one array to hold the current generation，and another to hold the new genera－ tion，so that changes for the next generation do not effect cells which have not yet been checked in the present generation．Set up a \(10 \times 10\) grid，and try and work out a program to（a）place some cells on it；（b）check each of these cells in turn in accord with Conway＇s

GENERATION ©




GENERATION D


GENERATION 1


SENERATION 2


SERERATI「K ヲ


GENERATION 4
4
laws，and then update a reference array；（c）copy the reference array into a＇print out＇array；and（d） print out the colony and start again．

Here＇s one way of doing it， which uses two＇data＇statements in the form of strings which are ac－ cessed element by element．A \(\$\) in line 30 contains information regarding the numerical relation－ ship of cells to each other（eg +1 is one to the right，-1 is one to the left and so on）．A \＄in line 90 is the position of the starting cells，when the grid is numbered one to 100 ． Line 30 contains the following： minus sign，plus sign，equals sign，

pound sign，graphic from the S key，graphic from the 2 key， graphic from the 1 key，space．

Note that there is a comma after the last element within A\＄in line 90．This is needed for the ＂data＂routine to work．

Other starting colonies you can try：

BEEHIVE： \(45,45,46,64,65,66,74,76,85\)
CROSS： \(43,47,54,56,65,74,76,83,87\)
MOBIUS： \(23,24,25,33,34,35,43,44,45,56,57,58,66,67\) ． 68，76，77， 78

RUSSIAN：33，34，35，36，37，38，47，56，65，74，83，84，85，
86，87， 88
FLAME：16，26，36，46，51，52，53，54，55，56，57，58，59，66， 76，86， 96

\title{
The ídeal school
}

\title{
computer
}

\title{
David Valentine looks at the ZX81 and asks if it really is the best machine for schools to use, even at \(£ 70\).
}

It is easy to see why the ZX81 is becoming so popular in schools. It is a friendly looking computer, not much larger than the now commonplace calculator and it has rapidly become a familiar piece of technology due to the saturation advertising of Sinclair. It is easily available through outlets such as W.H. Smiths, Griffin and George (school equipment suppliers) as well as, of course, mail order. There can be very few people who have not seen at least a picture of one andmany are purchased out of simple curiosity. It is hardly surprising then that just as the radio. the television and the video recorder have been taken up by schools, so has the \(2 \times 81\)

Is it then the ideal compter for use in a school? The answer to this must be a very guarded 'maybe'. Certainly I myself use more than one on a regular basis with a greeat deal of success, but this is only after meeting and overcoming a number of problems. I have also seen it dismissed as a toy not worthy of serious consideration.

What then are the points in its favour? The major factor has to be cost. If the school has very limited funds or if it wants to afford a number of machines then the ZX 81 wins hands down. It is worth remembering however, that no matter how good the value for money, if a device is difficult to use then it is not necessarily such a bargain. \(\mathrm{A} Z \times 81\) is inexpensive enough to allow home at weekends to suitable pupils
and is of course easily carried (ever tried stuffing a PET into your satchel?). The standard keyboard is proof against having liquids spilled on it and having pencils stuffed down it, both important factors in a junior school. Despite its size it is certainly powerful enough for most conceivable applications in a junior school and for many in a secondary school. The main limitation is the tiny amount of memory available on the standard model and although some very clever programs have been written for the 1 K version, I have found that they tend to be not very 'user friendly' in that there is little room for on screen explanation or error trapping and the use of graphics tends to be restricted.

What are the drawbacks to its usage and can they be overcome?

As I have already mentioned it will soon become apparent to a serious user that a memory expansion is required and it is here that we meet one of the major drawbacks of the \(\mathrm{Z} \times 81\). As you are no doubt aware the standard 16 K add on memory pack is simply pushed onto the exposed part of the printed circuit board at the back of the computer. This connection has rapidly achieved notoriety for being amazingly unstable. In short, it wobbles and can often lead to loss of program. I originally used a wide rubber band to hold my RAM pack in place but I have recently acquired a device known as a 'WOBBLEQUITS'. This is a shaped piece of sprung steel

method is to simply tape the plug in place with insulating tape. Another more sophisticated method is to make a wooden surround for the ZX 81 , boxing the leads on the left hand side. The power and the cassette leads are then replaced on the side of the box by more stable plugs such as 'BNC' types, easily available from any component shop or R.S. components for example. The existing leads are then cut, they are then soldered onto the back of the new plug. This short lead is now replugged into the 2X81 and can now be boxed in. Each long lead now has the 'BNC' male end soldered on and can then be plugged into the side of the box. As this does not affect the computer in any way it should not invalidate the guarantee. The leads can, of course, be soldered in directly onto the board, but as this involves opening up the \(\mathrm{ZX81}\) it should only be undertaken by someone who knows what he or she is doing as it is likely to invalidate the guarantee.
Much has been written concerning the unreliability of the LOADing system. Many is the time I have seen eagerness in the classroom turn to cynicism and boredom as a teacher has tried to load a program for the nth time, trying "just one more volume setting". Again, an experienced teacher will have experimented with all possible settings and will instinctively know if a program is loading. It is always a good idea to have loaded up any programs before the start of the lesson anyway!

The keyboard has come in for a lot of criticism, however I feel that a lot of the criticisms are invalid in schools. Pupils are not touch typists and tend to adapt very quickly to the idea of stroking the keys. The keyboard is rather cluttered but again I have been pleasantly surprised at the speed with which children have learned where each function is. They pick that sort of thing up much more quickly than most adults! I must add, however, that the lack of lower case letters must limit its use in an infant school. Teachers of reading have thrown up their hands in horror at the thought of having to use upper case all of the time!

I have spoken to people who are concerned with 'software libraries' for Local Education Authorities and have asked them why they are reticent to support the ZX81 and it is largely down to the drawbacks I have mentioned. Personally I feel such attitudes are rather shortsighted - the ZX81 has a lot to offer a School, however, unreliable technology is rapidly classed as a gimmick and is soon passed over by an experienced teacher who has 'seen it all before'.

\section*{Conclusion}

A powerful easy to use computer which is without doubt a very suitable machine for anyone who wants to learn or teach the fundamentals of computing for the minimum outlay. For more serious and extended applications in schools
some thought has to be given to make it as reliable as possible if pupils are not to become frustrated in using it.

\section*{MUSE winners announced}

Final awards have now been made in the special 2X81 software award scheme, organised last November by MUSE, the educational computing association, to encourage the production of learning programs, and sponsored by sinclair Research.

Well over 100 entries - "a most gratifying response", according to the organisers were received. Many have been accepted into the ZX 81 section of the MUSE software library, which with nearly 50 programs is now the largest section.

Eric Deeson, Educational ZX User Group organiser, and MUSE software librarian, Charles Sweeten, eventually decided to award prizes in only five of the six possible categories, "reflecting", said Eric, "less poor quality than an over-preponderance of science and maths material

Prizes of Sinclair ZX Printers went to Dave Fisher of Coventry in the primary maths/ science section for 'Bomber'; to Charles Rowbotham of Manchester under other primary for 'Sentry'; under secondary maths/ science to John McMullan of Stechford for 'Forensic'; under other secondary to Richard Marriot of Kenilworth for 'Bigspell', and under other to lan Souter of Tunbridge Wells for 'TLOG'. No award was made in the administration category.
Announcing the results Eric Deeson expressed MUSE's thanks "to Sinclair for making the awards and covering the costs of the exercise, and to the assessors for their always considerate and definitive reports"
MUSE is a national organisation for co-ordinating activity in primary and secondary schools, teacher training institutions, colleges and other establishments with an interest in the use of mini and microcomputers in any subject area of education. For further information on MUSE please contact Bob Trigger, MUSE Freepost, Bromsgrove B61 OJT, Worcs.


\section*{ZX Education}

\section*{Enough to send you up a tree}

\section*{James Walsh enters the numerical jungle}

Come on, who are they trying to kid. Firstly what has the jungle got to do with maths, secondly, maths cannot be fun... can it? Well at least it is a little less mind bending than ' 0 ' level chemistry or Undergraduate electronics.

Jungle maths is written for 'Juniors and Remedials' presumably between the ages of about six and thirteen. The jungle idea is that you are situated in a graphically represented jungle and have to get back to base. If you get a question right then you move on one place. If you get it wrong you lose one of your five lives in one of four weird and wonderful ways.

Each way is very well represented by some advanced moving graphics. If you take too long to answer the question, you see a full screen picture of "yourself" sink into quick-sand, and you lose a life.

On side one you have addition and subtraction with these choices; whole numbers, decimals, minus values, timelimit, size of number. On side two there are multiplication and division with the same choices.

\section*{Conclusion}

The documentation is good and gives the teacher quite a lot of help. Overall, this package is excellent. I have seen some educational packages on more expensive computers such as the MZ8OK and the Apple and this is the first time I have seen a ZX81 educational program with graphics anywhere near as good. Personally my only reservation was that I was tempted to get answers wrong in order to see myself being eaten by piranhas or fall into a deep pit. Due to the versatility of the program and the number of choices, it can be used by anyone from the bright six-year-old to the remedial thirteen-year-old.

Well done SCISOFT, this is very good indeed and I recommend it.

\section*{Making \\ connections}

\section*{James Walsh foresakes the trees for the p.c.b.'s}

From ' \(O\) ' level to ' \(A\) ' level in one giant leap. In the last edition I

looked at three '0' level revision packages, I have now made a rather rapid jump up to ' \(A\) ' Level with Philip Lawton's "Resistor - Capacitor Transients" package. This particular package is part of a series of program packages and video cassettes produced and marketed by Mr. Lawton. To put you in the picture, this package is aimed at GCE "A" students, TEC programmes and Undergraudate courses in subjects such as electronics. engineering, science and mathematics.
Together with the program, which incidently loaded first time, comes a hefty 26 page booklet aimed at giving the tutors themselves an idea of what the package is all about. The documentation is thorough, well thought out and constitutes a large proportion of the value of this package, hence I intend to spend a little more time than usual looking through the contents of the documentation.
The first couple of pages give a general outline of the contents, suitable courses and notes on the equations. Page three gives an index to video recording if you decide to record it (we will come onto this later). Pages 4 through to 9 give a basic run down of the program which you will need aitering for adaption to other computers, such as the PET.
The remaining 17 pages are dedicated to a script for use either as a guide for the lecturer
when using the program with his/her students or as a script for a video recording if using a video is more convenient than having the computer in the flesh (in the silicon would be more correct). A pre-recorded video is in fact available from Philip Lawton.
Looking now at the actual program, it is approximately \(71 / 2 \mathrm{~K}\) long and is supplied on a

C12 cassette. It can be run in three different ways:
(i) Continuously going through each function.
(ii) Continuously going through each function but waiting for a response from the user.
(iii) Running particular areas of the programs, to demonstrate particular problems.


written permission for copies to be made in the purchasers school or other similar educational establishment.

This is generally a good package and worth considering. Details of other titles are available from:

PHILIP LAWTON
4 TEMPLAR WAY ROTHLEY
LEICESTER LE7 7LN.
please include a stamped addressed envelope.

\section*{Getting back to primaries}

EdzX is a company specialising in educational software for the ZX computers.


The company is currently offering two programs: NUMPRAC and SPELL. SPELL is supplied with a supplementary program LETTERHUNT, and accessory Keyboard Overlay.

NUMPRAC is a suite of seven number practice games ranging from 'Count the Blocks' for 4 -year-olds to 'Series' for upper Primary; and including Varied Format questions in response to recent recommendations. Originally designed as the program with which to introduce computers into a school, NUMPRAC explains signs like *, emphasises the use of NEWLINE and the gentle touch on the keyboard.

The program has full input validation; it features bold reward-word graphics and sophisticated teacher's control facilities. NUMPRAC does not attempt to 'teach', it works by positive reinforcement.

LETTERHUNT and SPELL come together on one cassette. They share a common fount of bold lower-case letters and a lower-case Keyboard Overlay. The typeface on the overlay (Eurostile Bold) was chosen specially to match as closely as possible the characteristics of the letters obtainable with ZX81 graphics. The Overlay incorporates a BREAK key mask.

LETTERHUNT develops character recognition and keyboard familiarity, and is good preparation for SPELL.

SPELL is a substantial program intended to develop the quick recognition of words and the ability to respell them. (It is obviously not a 'reading' program since it is not concerned with the sound or meaning of words.)

The vocabulary is grouped according to word type and is safe from RUN.

The vocabulary is really incidental to the program and words may be added or deleted singly or in groups. This powerful facility enables the teacher (or better still, the children) to extend the vocabulary week by week with new words. The teacher can control exactly which groups are presented to the children or can leave an element of choice to them.

NUMPRAC is \(£ 3.45\), and LETTERHUNT/SPELL (cassette, documentation and keyboard overlay) is \(£ 3.95\). Overlays are 65 p each ( \(£ 4.00\) for 10). EdZX Educational Software (mail order only), 16 Grasmere Road, Dronfield Woodhouse, Sheffield, S18 5PS.

\section*{}

\section*{from}
J.K. GREYE SDFTWARE THE NEU SENERQTIONGOETURQE HIVIGE "Without question the finest machine code games available today:..........J.N. ROWLAND Product Manager for W.H. SMITH.
```

GAMESTAPE 1For 1K
10 Games ind, ASTEROIDS, UFO, CODE, BOMBER
GMILLOTINE, KALEIDESCOPE, etc.

```


We've done in it
required 16 k to dol


GAMESTAPE 2 for 18K
-STARFGHTER Superb STARFGMTER Superb machine code Space Battle Set against a background of twinking stars, with stunning PYRAMID Can you move the Pyramid PYRAMio Can y
it will colla, al al \(A\) Thinkers game ARTIST The ultimate Graphic Designers aid. 8 Directions, 10 Memories. SAVE, COPY, AUBOUT, CLS, etc.

GAMESTAPE 3 for \(16 K\) K "CATACOMBS A Mult-Level Graphics Adventure. Each
level can contain up to 9 Rooms, 8 Passages, 7 Monsters, level can contain up to 9 Rooms, 8 Passages, 7 Monsters,
Food, Gold, Traps. Phantoms, an Exit (to the next level), and there's an infinite number of levels
NOTE. This is NOT one of the necessarily limited text
Adventures as sold elsewhere Adventures as soid eisewhere
"An excellent addictive game An excellent addictive game which will keep you amused
for hours." COMPU \(\mathrm{CR} \&\) VIDEO GAMES
 or hours. .... COMPUTER \& VIDEO GAMES


GAMESTAPE 4 for 18K
*3D MONSTER MAZE The Game to Top Ally \(\mathbf{C 4 . 9 6}\) Unbelievable Graphics! Can you find your way through the Maze? The EXIT is there somewhere, but then so is a T. REX. and its atter YOU' All in 3D the T.REX will actually run towards you in full perspectivell, you've never seen anything like thas before!
3D MONSTER MAZE is the Dest game I have seen for the
ZXAI-ZXBr- COMPUTER \& VIDEO GAMES
If I had to choose ust one programme to impress an avdience with the capabilities of the ZX81, then IK Greve's 30 MONSTER MAZE would be the one without doubt * ZX COMPUTING

\section*{GAMESTAPE 5 for 18K}
*3D DEFENDER The Ulimate Space Game Super fast Machine Code 30 version of the Arcade favourite. You have to save vour home planet from the marauding Alen Spacecratt. This is all in 3D, your viewscreen shows you the vew out of yout fighters cockpit window The backdrop moves when
vou turn of fy up or down is fight directions) iust as it you you turn, of fly up or down i8 flight directions), just as if you
were really flying it! But then YoU ARE! The Enemy Saucets were really flying it! But then YOU ARE! The Enemy Saucets
will actually room towards you in 30 and shoot you if you will actually room towards you in 3D, and shoot you it you let themt Your display includes Score, Shield Strength, Altitude, Proximvty, Forward Radar and your vewscreen which shows your rotating home planet, backdrop of Stars. Meteors, Explosions. Plasma Blasts, your Photon Bearns, up to 4 Enemy Saucers and of course its all in
A SMASH MIT at the ZX Microfair imost of the other software houses wanted a copyl, a game not to be missed!

GAMESTAPE 6 for 1 K -

-only C1.95
*BREAKOUT Super Fast Full Screen Display Game Yout
all time favounte with an added twist See how all time favounite with an added twist See how much Money you can win and watch the pounds convert to Dollars. All
in Machine Code for Fast Action with 3 Speeds. 2 Bat Sizes in Machine Code for Fast Action with 3 Speeds. 2 Bat Sizes
and three angles of rebound The best BRE AKOUT around and thee angles of rebound! the best BREAKOUT around

GAMES MARKED - INCL. MACHINE CODE Prices include VAT and U.K. P. \& P.
(Add appropriate Postage on Foreign Orders). Cheques/P.O.s to
J.K. GREYE SOFTWARE

Dept.ZX, 16 Park St., Bath, Avon BA1 2TE.
CREDIT CARD SALES: Phone: 01-930-9232 (9 a.m. 7 p.m.) FOR INSTANT DESPATCH

If you prefer to see before buying, oyr range of GAMESTAPES
are stocked by the following stores are stocked by the following stores.
BUFFER MICROSHOP 374.A. Streatham High Rd. London SW16 GEORGES 89 Park St., Bristol, Avon MICROSTYLE 29 Belvedere, Lansdown Rd
MICROWARE 131 Melton Road, Leicestes MICROWARE
SCREEN SCENE
STH St. Georges Rd, Cheitenham, Gios W.H. SMITH Computer Branches

ZEDXTRA 5 School Lane, Kinson Bournemouth. Dorset
TRADE \& EXPORT ENQUIRIES WELCOME

Now! For the SPECTRUM 48K! A

 HARIDWARE REQUIRED
\begin{tabular}{|c|c|c|}
\hline Spectrum 48K RAM & \[
\begin{aligned}
& \text { TRSBO } \\
& \text { Video Genie }
\end{aligned}
\] & \begin{tabular}{l}
\(\because\) Dept. Z.X.C. PO. BOX 278 \\
(O) VIAT NHOH
\end{tabular} \\
\hline 2×8i & LEVEL II & Wh TOUA1Y以 Mkl4 7 \% \\
\hline 16K RAM & 16K RAM & Pll \\
\hline
\end{tabular}

\section*{WHAT CAN I DO WITH 1K?}

If your answer is "not much", then you must read Roger Valentine book, 'What Can I Do With 1K? (40 programs and routines for the 1 K Sinclair ZX81)'
a splendid book and one which will repay your investment time and time again." (ZX Computing). Book £4.95.
Also available on cassette \(£ 4.95\)

\section*{NEW}

\section*{WHAT CAN I DO WITH 16K?}

The companion volume to the above, containing complete program listings for 16 K

\section*{Book £4.95.}

Cassettes available individually - ask for list.

\section*{ZX81 PAYROLL}

Probably the best ZX program ever written for the serious business user.
Cassette (only) \(£ 12.65\) inc VAT
Manual (only) £2.00
Cassette \& Manual \(£ 14.50\) inc VAT
ALSO AVAILABLE FOR PET (32K) \& SPECTRUM 48 K
V\&H Computer Services
182c Kingston Rd.
Staines
Middx.
Tel: Staines 58041


Watts that？

\title{
This program，written by D．Buckley of Aston－under－Lynne，is ideal for students studying physics，who have to carry out a number of Joule or Watt calculations．
}

When the program is run，a menu will appear，and＇joules＇or＇watts＇ can be selected by entering the appropriate letter．All you have to do then is enter the figures，and up comes the answer．


10 REM＂JOULES＂
20 REM D．BUCKLEY
30 PRINT＂JOULES／WRTTS PROGRRH：
40́＇PRINT＂JOULES：INPUT \(A\)＂

\(1 \frac{120}{130}\) PRINT＂ŔÁfUUR TO MENU：INPUT
1．140 PRINT＂CONTINUE
1150 INPUT \(\mathrm{A} \$\)


追160 PRIN
21？8 PRINT＂RETURN TO MENU：INPUT
2180 PRINT＂CONTINUE ：INPUT
2199 INPUT A事
2この日 IF A \(\$=\)＂A＂THEN GOTO 25
2210 IF A \(\$=" E\)＂THEN GOTO 2000

\title{
ELECTRICAL CIRCUITS
}

> From Paisley, Scotland, Thomas Ballantyne has sent us a program which was devised to calculate and illustrate - using circuit and phasor diagrams - the characteristics of a series AC electrical circuit. The program is for a 16 K ZX81.


The program covers series AC circuits having: Resistance, and Inductance: Resistance and Capacitance: Resistance, Inductance and Capacitance. It has also been designed to cover the case of Series Resonance.

Calculations of: Reactance : Impedance : Current: Voltages : Power Factor: Power in Watts : Volt Amperes and Reactive Power are made and the results displayed. A circuit diagram is drawn. The circuit has the current displayed and the voltages across the components. Values
are to the nearest whole number.

The program can then be used to illustrate the phasor diagram for the circuit. The diagram shows the in phase, and out of phase voltages, and the phase angle between current and applied voltage.

The user is prompted to enter the essential quantities one at a time. If capacitance is to be entered then it should be in farads (eg 200 Microfarads \(=\) \(200 \mathrm{E}-6\) farads). If there is no
resistive and inductive only), then capacitance should be entered as 0. Even though theoretically this would give infinite reactance. The program is arranged to take account of this. In similar fashion if there is no inductance enter this as 0 No provision has been made for zero resistance, this being an unlikely occurrence. However, if 0 is entered for resistance the program will run normally, until it reaches the stage of displaying the phasor diagram. The diagram will appear on the
screen and a code 6 will indicate an arithmetic overflow.

The program may be run in fast or slow. Slow allows the diagrams to build up, and can be fascinating to watch. The program was originally devised to assist in the teaching of this subject to electrical students who were apprentices. A further adaptation is planned to make the student do a bit more work than the computer, the basis of real learning.


PRINT
IF \(C=0\) THEN GOTO 265
LET XC＝1（2＊PI＊F＊C）
PRINT
PRINT
PRINT＂CAPACITIUE REACTANCE

IF \(\times L>X C\) THEN GOTO \(E 50\)
LET \(Z=S Q R\)（ \(\{R \pm R)+(\times C-X L) *(X\) 3
PAUSE 200
PDKE 16437,255
C노
PRINT＂IMPEDANCE \(Z=\cdots ; Z ; " \quad \mathrm{OH}\)
LET \(I=E, Z\)

PRINT
PRINT＂P．D．ACROSS RESISTOR
PRINT ．＂\(={ }^{\prime \prime}\) ；UR；＂U．．＂
LET UL \(=I * \times L\)
PRINT
＂P D．ACROSS INDUCTOR
PRINT＂THEN \(={ }^{\prime \prime}\) ；UL；＂U．＂
IF \(C=0\) THEN
LET UC＝I＊×C
PRINT＂P．D．ACROSS CAPACITOR
PRINT＂\(=\)＂；UC；＂U．＂
IF INT \(\left(X_{L}+0.5\right)=\) INT \((\times \dot{C}+0.5\)
HEN GOTO 670
43 C LET \(\mathrm{PF}=\mathrm{R} / \mathrm{Z}\)
446 PRINT
450 IF \(C=0\) THEN GOTO 480
455 IF \(\times\) L \(>\times C\) THEN GOTO 480
450 PRINT＂POWER．FRCTOR \(="\) ；PF；\(\cdot\)
＂PRINT＂POWER．FACTOR＝＂；PF；＂

470 GOTO 490
480 PRINT＂POWER FACTOR \(=\)＂；PF；＇＂ LAG＂
500 LET \(Y=R C S\) PF
5
D
524 PRINT
NEWLINE＂
SOT STAP
＂PRESS CONT BUTTON AN
\(\mathrm{J}=\mathrm{E} * \mathrm{I} * \mathrm{PF}\)
LET W＝E＊I
PRINT
PRINT＂PO
LET S \(=E * I\)
PRINT
OWER＝＂；H；＂แ．＂
＂PRPPRRENT POUER \(=\)＂； 5 ；＂
Q＝E＊I＊SIN Y
LERTNT
＂REACTIUE POLER＝＂；\(\oplus\) ；＂
＂PRESS D AND NELILINE＂．．
＂FFOR CIRCUIT DIAGRAM＂．
A事＂THEN GOTO 730
\(=" D "\) THEN GOTQ 730
\(=S Q R \quad(\)（RAR）\(+(X L Y L))\)

It J
のはの日
680 PRINT＂CIRCUIT IS AT，OR＂
590 PRINT＂NEAR RESONANCE＂
595 PRINT
700 LET PF \(=1\)
－
720
75
7
7
7
7
730
740
7
7
7
7


5080 \(50.5)\)

5120
5130
6140
5145
516
5150
フ150
7005
7a08
7010
7 720
7030
7240
7050
7055
NT， G
？ 070
8020
3025
8008
8010

8030
8040
3050
3050


8015 IF \(-M * X+2 Q<Q\) THEN GOTO 8040 3020 PLOT \(x\) ，INT \((-M * X)+2 \emptyset\)

PRINT AT 14，24；＂：E＝＂；E；＂U．＂ PRINT AT 2,\(3 ; " 0\)
PRINT AT 16， 4 ；＂LEADING P．F．
PRINT．AT 17，4；＂ANGLE \(\theta="\) ；IN DEGS
STOP
GOSUB 9000
UC）\(\cdots\) AT 4，2；＂（UL－UC）\(={ }^{\prime}\) ；INT
LET＇M＝TAN（G＊2＊PI／36日）
\(\begin{array}{ll}\text { FOR } \times=0 \text { TO } \\ \text { PLOT } & \times 0 \\ \text { ，INT } & (M * X)+20\end{array}\)
NEXT \(\times\)

PRINT AT 19，16；＂ANGLE \(0="\) ；I ＂DEGS＂
STOP
GOSUB 9aロ日
PRINT AT 18,\(2 ;{ }^{\prime}(U C-U L)=\cdots\) ；IN －ULㄹ․․ U．＂
LET \(M=\) TAN（ \(G * 2 * P I / 360\) ）
FOR \(x=0\) TO 20

PRINT AT 12,\(3 ; " \varnothing "\)

PRINT AT 21，14；＂ANGLE \(\theta=" ; ~ I\) STOR
FOR \(x=0\) TO 56
PLOT \(\times, 20\)
NEXT \(\times\) AT
PRINT
\(\begin{array}{ll}\text { FOR．} \\ \text { FOR } \\ =20 & 11,24 \\ \text { TO } 40\end{array}\)
PLOT ®，\(\gamma\)
NEXT \({ }^{\gamma}\) aT 2,\(2 ; " U L="\) ；INT（UL＋
PRINT
FOR \(\because \because=20\) TO O STEP -1
PLOT \(0, Y\)
NEXT Y P 20，2；\(\cdot \cup \cup=\cdot \cdot\) INT

PRINTं AT 9，23；＂UR＝＂；INT（UR RETURN

PROGRAM REQUIRES
RESISTANCE IN OHMS
INDUCTANCE IN HENRYS
"CAPACITIUE IN FARADS
FREQUENCY IN HERTZ
SUPPLY UOLTAGE IN UOLTS

ENTER
THE URLUES

RESISTANCE \(R=10\)
INDUCTANCE \(L=.95\)
CRPACITRNCE \(C=.0003\)
FREQUENCY \(F=50\)
SUPPLY UOLTAGE \(E=200\)
IMPEDANCE \(Z=11.224343\) OHMS
CURRENT \(=1 \frac{T}{7.818415 ~ A . ~}\)
P.D.ACROSS RESISTOR UR
\(=178.18415 v\).
P.D. ACROSS INDUCTOR UL
\(=279.89101\) U.
P.D.ACROSS CAPACITOR UC


\section*{MICROWARE}

MICROWARE


SAE BRINGS CAT

\section*{TILROURRE}

131 MELTON ROAD, LEICESTER
Tel: 0533681812
IMPORTANT NOTICE
As from 1st October our NEW ADDRESS will be: 12 ST. PETERS LANE, LEICESTER
Close to Clock Tower and several large car parks.
Retail Shop for SINCLAIR Computer Accessories Hardware, Software. Books and Magazines. Business/ Educationsi/Serious and Games Software. Keyboards. Ram Packs, G/Roms, Printers, 1/O Ports. Spectrum Sound Boxes etc.

NOW SELLING NewI DRAGON 32 , supporting software and hardware. Also software and books for BBC MICRO and VIC 20.

SPECIAL MICRO SOFTWARE for 16 K Spectrum
W
\(\qquad\)

\footnotetext{
Both programs avalabie trom shop or mal order
}

Software writers - programs requif ed for Spectrum \& Dragon exc rovabes

\section*{Software}

\section*{Preparing a tape directory for the}

\title{
2X81
}

\title{
The ability of the ZX81 to SAVE and LOAD a named program on tape opens up new and interesting possibilities. James Calderwood coleraine, explains how it is possible to load a program from a directory, by just entering the number printed beside the program of your choice.
}

The obvious way to LOAD a program is to type LOAD "LUNAR" followed by NEWLINE. However, it is possible to use an expression such as LOAD ES where E\$ has the value "LUNAR" or whatever the required program name may be, eg
LETES = "LUNAR"
LOAD E\$
has the same effect as LOAD "LUNAR". Not very useful, you may say, two lines to type instead of one; but as I will show in the program following, this fact can be used to good effect. There is just one other point to understand before we see how to develop a directury program. It may seem that if we can use the expression LOAD ES we could equally use LOAD AS (5) or LOAD AS (C). Well, we could,
except for one little problem. If A\$ (C) has been DiMentioned as, for example, \(\mathrm{A} \$(12,12)\) then AS (5) would not be LUNAR but LUNAR followed seven spaces to bring it up to 12 characters in length. This would not be recognised as the title given when the program was SAVEd as LUNAR.

This problem is overcome by putting a full stop "." after each program title in the directory. Your ZX8 1 will recognise this as the end of the title and LOAD the required program. (You must not, of course, use the full stop in the title when you SAVE the program.)

PREPARING THE DIRECTORY
How you prepare your directory will depend on the amount of

memory at your disposal. The program I have given here uses about 2 K , so let us look at some factors influencing the memory needed, and see how we can adapt the directory to fit 1 K if this is the memory available. Here are some economies we can make:-
1. The DIM statements in lines 10 and 20 are dependent on the number of programs to be recorded on the tape and could
vary from 4 or 5 to 20 or \(30=\) depending on the length of tape used. The second argument of \(B \$\) is the maximum length of the title to be used. So the shorter the title we are prepared to accept the less memory needed. I have found that ten titles of eight letters each (ie \(7+\) ".") is quite satisfactory and very economical.
2. Once your directory is complete you do not need lines 10 to


\section*{ZX81 SOFTWARE}

\section*{TAPES}

ZX Adventure Tape 1 \(£ 5.00\)
Greedy Gulch, Pharaohs Tomb, Magic Mountain. Three mind-boggling Adventures. "Undoubtedly the best value for money of all the Adventures I have seen so far" - Sinclair User, May 1982.16 K RAM required.

The Nowotnik Puzzle \& Other Diversions
£5.00
The Puzzle is a totally original concept in computer games. Superb graphics, simple rules and 5 levels of difficulty make it a challenge for all. Also includes "Demolition", a fast \(\mathrm{m} / \mathrm{c}\) interactive game, and "Tenpin", a full bowling alley simulation. 16 K RAM required.

\section*{BOOKS}

The ZX81 Pocket Book
15.95

136pp of programs, articles, useful subroutines, plus a complete guide on how to create your own Adventures! (Two of those on the tape above are based on the Master program from this book). "Strongly recommended" - Your Computer, November 1981.

Atom Business
£6.5
Twelve programs for the expande Acorn Atom - sales graph, nominal ledger plus much more.
ZX81 Pocket Book Cassette
E5. 00
Atom Business Cassette
88.62

Mail order: PHIPPS ASSOCIATES
Mail Order Dept.
99 East Street, Epsom, Surrey KT17 IEA
Prices include UK P\&P, \& VAT on tapes.
Phone Access/Barclaycard orders: Epsom 21215 24hrs.


\section*{Do you have money problems?}

Don't we all. But don't worry - CASHCAST can help you
CASHCAST will project your cash flow and cash balances for up to fifteen months ahead.
By eskmating your income and expenses in up to eighteen dtterent categotes for each of the next ititeen months you can use CASHCAST to project which wil be your most aftcul morths You can test whether you can aftord a nolidy or whether you will need an overdrat By tuming what in projections you can see now much you can attord to spend monthly on. tot example, smoking of entenainment

Very easy to use menu driven with graphics CASHCAST is a must

Will a million monkeys on a million typewriters eventually produce a Shakespearian sonnet?

The answer is Yes And so will POET
POET writes verse with a vocabulary of over 300 words and grammatically correct sentences using up to eight different parts of speech.
This a not a smple slogan scrawer but a sophasticated and entertaining verstier it has tou dfterent "moods" which you can control
The vocatulary can be personalised so drop in the names of a tew triends and have a laugh You may not want to produce a Shakespearian sonnet but it you keep at it long enough who knows?

CASHCAST and POET are supplied on cassette at \(£ 4.95\) each or \(\mathbf{£ 6 . 9 5}\) for the two from
MICROZ. Dept B, 86 Lowther Road. London SW 13

\section*{Spectrum} MONITOR
MACHINE CODE DEBUG/DISASSEMBLER
- Enter Run Debug machine cose prograrrs
- Compatibie with Basic
- Breakpoint \& Register Display £7.50
- Disassemby to Screen and or ZX Pronter
- Number conveter - Hex/Dec/hex
- 16K and 48 K versions on one cavsutte - 30 page Manuw

EDITOR/ASSEMBLER available soon - please send SAE for details
ZX81
SCREEN KIT 1
MORE POWER TO YOUR SCREEN
4 K to 64 K
£5.70
BORDERS any site, anywhere on screen SCROLL in all 4 directions CLEAR and REVERSE PART OF SCREEN.
FLASHING CUASOR ancahere on screant DATA FILES Save \& Load Bas on scrobles Doulie Soeed

8oo byes machine code for INSTANT AESPONSE Becomes part of Basic Programi
ZX-MC MACHINE CODE DEBUG/MONITOR
COMPLETE FREEDOM FROM BASIC tor machine code programmers

4 K to 65 K

ENTER RUN DEBUG machine code SAVE, LOAD, VERIFY at doube \(£ 7.50\)
REMLOAD
16 K to 64 K
£6.95
speed BREAKPGINTS and REGISTERS OSPLAY Sel contaned -

\section*{MACHINE CODE ENTRY/DEBUG}

Vers on of 2 X -MC without the Save/Load/Venty facily ENTER AUN DEBUG machine code instantly CREATE A REM LNE of any length Compatidle with Basic. Swith between Program os
RFMLOAO Screen displays. Breakpoints and Registers dispia,s


\section*{THE BEEB PRODUCES THE BEST T.V. PROGRAMMES IN THE WORLD. . .}

Uncle Clive produces the World's best computers and Jack Gibbons A.I.B. produces the best Banking Programs in the World .

Anon.

\section*{THE PERSONAL BANKING SYSTEM}
is available direct from
J.P. Gibbons A.I.B. 14 Avalon Road, Orpington, Kent, BR6 9AX.
Price \(£ 9.95\) inclusive
For Cassette and Users Manual (Requires 16 to 48 K Ram). Bank reconciliation module £6.50. Specify whether ZX81 or Spectrum.

Also stocked at the Buffer Micro Shop, Streatham - Microwave Shop, Leicester ZedXtra, Bournemouth - and branches of the Computer Bookshop Group.

Full after sale maintenance available.

\title{
Linear programming,
}
and OPTIMAX

\title{
Linear programming is a mathematical technique that has been used to solve all sorts of problems, by performing an optimisation on information you supply it. Hiderbay's program OPTIMAX is designed to give the ZX81 owner access to this powerful decision-aiding technique.
}

CROM
is the solution to the problem?', we are asking 'What is the best solution to the problem?'. Finding this best solution is usually called optimisation. But what do we mean by 'best'?
Talking about best implies that we have an objective in mind. For any form of optimisation we must be able to express this objective in a mathematical form. Normally we are trying to maximise something, for example, profit; or minimise

CROM
from the manual, which appears under the heading 'Formulating a problem for OPTIMAX:
"The first thing to realise is that all you are doing is creating a model of the problem. There is a direct correspondence between the real life situation and this model. For example, if you are mixing cattle food and there is a requirement for a minimum amount of protein to be included, then there will be a con-
straint in the model covering minimum protein content. Similarly, the objective of the model corresponds to your objective in real life.
"You must tell the model how to measure the objective, just as in the real life situation you must have some way of measuring your objective. For example, if you run a factory and you wish to maximise your profit, you might measure your total profit in terms of the number of each product you sell multiplied by the profit you make on each one. The equivalent of this method of measurement must be set up in the model.'
Full details on OPTIMAX, and the other business programs available from Hilderbay can be obtained by ringing Mike Salem on 01.485 1059, or writing to 8/10 Parkway, Regents Park, London NW1 7AA (Telex 22870).

Here is a summary of functions available, and their codes, in OPTIMAX:
\begin{tabular}{|c|c|}
\hline A - & Create variable \\
\hline B - & Amend variable \\
\hline C - & Delete variable \\
\hline D - & Create constraint \\
\hline E- & Amend contsraint \\
\hline F- & Delete constraint \\
\hline G - & Create usage \\
\hline H- & Amend usage \\
\hline - & Delete usage \\
\hline J - & List all variables \\
\hline K - & List all constraints \\
\hline L - & List all usage by variable \\
\hline M - & List all usages by constraint \\
\hline O- & Optimise \\
\hline P - & Copy screen to printer \\
\hline & Display variables in solution \\
\hline & isplay constraints in solu tion \\
\hline W & Erase all data prior to entering new problem \\
\hline X - & Save data \\
\hline Z - & Load data \\
\hline
\end{tabular}

\section*{Sample output from OPTIMAX:}


\title{
Tracking down those pounds
}

\section*{Not only can you play games in your ZX81, but now, with a number of programs, you can keep track of your personal finances.}

Among these programs is the J P Gibbons Personal Banking System, which can also be used to check bank statements.
The system can be used to help in budgeting and is designed to be easy to use, even by relatively inexperienced computer users. A number of controls and facilities have been built in with this in mind.
The Personal Banking System includes a full page detailed bank account, which can be dumped to the printer, as well as automatic generation of standing orders on due dates, and validation of all entries.
You can correct any item previously entered (with single or multiple field correction), and enter a previously omitted item in the correct date order of the account.
You can search for any item or items by cheque number, description or amount. There is a continuous display of statement extract, which is updated continually during input of entry. A file of standing order details can be displayed. printed, added to, cancelled and amended.
The program is provided with a detailed user manual, and Mr Gibbons says he'll provide after sales maintenance. The Personal Banking System (including a cassette and users' manual) is \(£ 9.95\). You can get a copy of the manual for \(£ 1.00\). A 32 K version, offering multiple accounts, more entries and bar charts - among other features - is also available. JP Gibbons, 14 Avalon Road, Orpington, Kent, BR6 9AX.

\section*{Database}

Most businesses and many other activities require the filing of names and addresses for mailing and reference, and DATABASE - available from Campbell Systems - fulfills this function admirably.

Almost any kind of list can be accommodated, but most users just make use of name, address, interest codes, and
text - as the standard data to be stored in each record of the file.

The file is maintained by machine code in a way that ZX81 BASIC cannot, such that no space is reserved until after it is filled with data.
All items and records are variable length, so there is no waste of space.
You start with 12688 bytes of file space, and extra RAM above the 32 K address will be usable as well. There are various display formats and search methods.

All file handling, searching and display is done in machine code, so DATABASE is very fast. The program is designed to be crash-proof.

The cassette, which costs \(£ 10.00\), is accompanied by a detailed user guide, and is available from Campbell Systems, 15 Rous Rd, Buckhurst Hill, Essex, IG9 6BL.

\section*{Business games}

A company called CCS have developed two business games for the ZX81. They are AIRLINE and AUTOCHEF, which are available for \(£ 4.75\) each.
In AIRLINE your objective is to make enough capital by trading at a profit to take-over British Airways. You are required to decide on the number of aircraft to operate, whether to buy or charter, the level of staffing and maintenance, whether to enter into long-term contracts for supply of fuel and whether to repay loans. Problems encountered are tax demands, strikes, cancelled flights, hi-jacks and aircraft crashes.

In AUTOCHEF your object is also to trade profitably, so that the company accumulates sufficient capital ( \(\$ 25\) million) to take-over Trust House Forte in the shortest possible time.
The quality of the decision making is of even greater importance in achieving the objective than it is in Airline. From information supplied you have to decide on which type of outlet
to operate, the price of the menu, whether to enter into loan contracts or purchase consignments of food or wines and the level of advertising, wages and dividends. You are warned that if results and dividends are insufficient to satisfy the shareholders, you will be made to resign. There are three levels of difficulty.

Cases Computer Simulations are at 14 Langton Way, London, SE3 7TL.

\section*{Video-Plan}

Video-Plan, developed by Video Software Limited, is designed to enable the ZX 81 to be used as an analysis tool. It performs many functions which could otherwise be carried out using an analysis book and calculator.
Video-Plan can be used for such tasks as keeping stock records, analysing sales orders or invoices, analysing expenditure by nominal headings, cash flow forecasting or production scheduling.
The heart of the system is a user-defined chart stored in the computer's memory (say 50 lines by 20 columns). Data may be added to the chart and a full range of calculations performed across the lines, together with column totalling and subtotalling. The TV screen acts as a window through which the chart may be viewed. This window, of course, can be moved under user control to any part of the chart.

\section*{Dratted VAT}

In the last issue we had a couple of programs to help you

The cassette is well designed, with two copies of the program on one side, and a spoken explanation of the Video-Plan demonstration supplied is on side two. The program is very long ( 14 K ? ) and starts running automatically. It takes nearly eight minutes to load. No loading difficulties were experienced.

When you first get the program up on the screen, a menu of seven choices is displayed: 1 - set up new chart
2 - define functions/titles
3 - enter data
4 - move window
5 - save the system
6 - reset chart
7 - re-calculate totals
If you wish to set up a new chart, you are invited to enter the dimensions (line and columns). A chart which is too big is rejected by the program.
The program is supplied with a clearly written, detailed 20 page booklet. Although it may seem overwhelming at first, the demonstration application, along with spoken word description, should enable any careful user to discover the value of the program. In summary, this is a carefully written, well-documented program, which should prove a definite asset to a company wishing to carry out any of the tasks mentioned at the start of this article. It is available from Video Software Ltd., Stone Lane, Kinver, Stourbridge, West Midlands, DY7 6EQ.
work out VAT. Reader John Jameson says he can do the same things those programs did, but more simply. Here's his program:

\section*{UAT RATE IS 15 PER CENT}

\section*{UTILITY}
```

1.2.24
16.58
127.92
:5
ID REM CALCULATING UAG
IS REMMNE) IS. UAT RATE IS 15 FE
CENT"
3Q PRINT "ULIST PRESS NEWLINE"
4.Q.PRINT "IF YOU WANT ANOTHER
SATE" PRINT "THEN ENTER THAT BEFO
RE
SQ PRINT "PRESSING NEWLINE"
Q INFUT A去
90 IF R事く,...' THEN LET R=URL A\$
120 SCROQL
"IE FRINT,"THE UAT RATE IS ";R;
\&ER SERNT:
"HOW MUCH IS ONE ITEM
INPUIT C
135 TNP
I40 SCROLL
141 PRINT "UAT RATE IS ";R;" PE
R CENT"
142 SCROLL
143 SDROLL "COST";TAR 10; "UAT";T
15Q FOCOST+UAT" 10
170 PRINT G*C;TAB 1Q; INT (C*G*R
IQQ;TAB EQ;G*C+INT (R*C*G)*IQR

```

Getting installed
This utility program will work out instalment payments， when no interest is charged． The program prompts are self－explanatory．
```

 10 REM INSTGLMENT FFYMENTS
 15 REM NO INTEHESI GHARGED
 20 PRINN "ENTEKESGSLHARGED."
 OO INPUT RENTER DEPOSIT AS A -
 40 PRINT "ENTER DEPOSIT AS A P
 ERCENTAGE", "OF CASH PRICE
5 0 ~ I N P U T ~ D ~ D , ~
50 LET D=D/100*P
70 PRINT "OUER HCW MANY MOINTHS
EO INPUT N
90 LET M=(P-D) NN
IOQ PRINT "THE HIONTHLY PAY'HENT"
110 PRINT "WILL BE E"; INT (200:
(M+.005)),100

```
pints to kilometres

Simple metric conversions are handled by this program，pro－ vided by John Knight，of Cheshire．


\section*{Keeping covered}

Martin Kempler sent us this pro－ gram，to work out how much carpet you need to cover the floors of your home．As you can
see from the sample run（for three rooms），the prompts are simple leven if they do assume your rooms are rectangular）． and the output is easy to understand．

HOW MANY ROOMS？
WHAT IS LENGTH OF ROOM 1？
WHAT IS WIOTH OF ROOM 1？
AIVD THE TOTAL AREA SO FAR
WHAT IS LENGTH OF ROQM 2 ？
WHAT IS HIDTH OF ROQM 2 ？
RREA OF ROOH E ISE \(2 Q\)
RNO THE TOTAL RRER SQ FRR
WHAT IS LENGTH OF ROQM 3 ？
WHAT IS WIDTH OF ROOM 3 ？
AREA OF ROOM 3 IS 104
AND THE TOTAL AREA \(4 Q 4\)


\section*{Along the wire}

\section*{From Aughton in Lancashire, Daniel Haywood presents two challenging 16K programs - ALONG THE WIRE and a sophisticated SKETCH PAD - which allows you to save pictures you've created on tape.}

The first program is ALONG THE WIRE. You have to guide a 'hoop' through a length of wire without touching the wire. You move at a constant speed, and can only see a small part of the wire in front of you.

You move with the "W" key (up) and the "Z" key (down). When you press NEWLINE or ENTER, you'll see the wire drawn out and you may study it for a short time. . . and then you are off.

Because some of the inverse print statements (in common with inverse print statements on ZX printers in general) are not too easy to read, we'll list them here for you:
330 PRINT AT 5,10;"WELL DONE'
1050 PRINT ..., TAB 5 :
"PRESS NEWLINE NOW"
2070 PRINT AT Y,X;"BUZZ'


\section*{Software}
 34
，
\begin{tabular}{|c|c|}
\hline & F HIGHy＝EQQRE THEH GOTO 21 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} \\
\hline & \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
2コニE FOF \(\mathrm{F}= \pm\) TO \\
2IE7 IF INKEY\＄く＞＂い THEH GOTO 212
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|r|}{LET 二ぁ＝I检EY} \\
\hline &  \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\％}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{33} \\
\hline \multicolumn{2}{|l|}{34 PRENT} \\
\hline & HIatir HEid EY＂Hj \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{ （5TPIOTTONS（Y（H）～い}} \\
\hline & \\
\hline \multicolumn{2}{|r|}{5 If INKEY\＄＝＊＊THEれ G0T0 2145} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & 2150－（2140 R扣 It \\
\hline \multicolumn{2}{|r|}{} \\
\hline & FRVNT 日T Ii，13：＂EYEEE＂ \\
\hline & \\
\hline
\end{tabular}

\section*{Sketch Pad}

\section*{Unleash your artistic frustrations with this amazing program．}

With SKETCHPAD，you can draw on the screen，clear the screen， save the picture on tape or transfer the screen to printer．

The keys to move the flashing cursor are shown when you run the program（instructions start at line 5010）．You can also change the mode of drawing（ie a line or no line）by pressing＂ 9 ＂and＂ 0 ＂．

Note that when typing in line

10，the massive REM statement， you have to type in a number of spaces．To check that you have the correct number，enter PRINT PEEK \(16511+256\) ．PEEK 16512．This should give 686；it can be more，but the extra spaces will not be used．If you POKE，as a direct command， 16514 and 16515 with 118 ，you won＇t be able to see the listing．

SHED OHPFD
TO REM


 －音


Lines in inverse are：
999 REM LOAD FROM FIRST＇REM
1999 REM LOAD INTO FIRST REM
2000 PRINT AT 0，0；＂CONFIRM：SAVE SCREEN（Y／N）？
2150 PRINT AT O，O；＂PLEASE CHECK LEADS AND VOLUME ON YOUR TAPE RECORDER＇
2999 REM CLEAR SCREEN
3000 PRINT AT O，O；＂CONFIRM：CLEAR SCREEN（Y／N）？．．
3999 REM STOP PROGRAM
4000 PRINT AT O，O；＂CONFIRM：STOP PROGRAM（Y／N）？．．． 4500 PRINT AT O，0；＂CONFIRM：
4999 REM INITIALIZE INSTRUCTIONS







 FER SCREEN TO THE DRIMTEN ₹Y，NN


 4530 INPUT C \(\ddagger\)
4540 IF LEN C \(\$ 36\) THEN BRTQ 4590 1550 PRINT RT R，2：＂SURPY＂TDU LON Э．PLEASE PE－TYPE ค ЗHORTER TITLE
4560 FOR \(I=1\) TQ SQ
4576 NENT I
4550 GOTO 4520
与寺
4500 LPRINT
4610 PRINT RT 4 ， \(2 ;\)

452 COPY
4625 LPRINT
\(453 \%\) PRINT AT Q．Q；B寺
\(\triangle 54\) GOTO 160
 5000 Stot
 \(5397+67\)
 SLEAR SCREEN 3：－STOP PROERAY4 4：－ PRINTER
5026 PRINT TAB ล：＂SKETCH PAD＂
5030 PRINT＂USING THIS PRLQRATH YOU CAN DRAi DN THE SCREEM，CLER
 © TAPE，AND
Y TG PRINTER＇


 506日 PRINT E THE NOBE OF DRAWINE FI，E GM INN \(\begin{array}{ll}2050 & \text { NEXT } \\ 2100 & 5101\end{array}\)
2100 51OH

PLEASE PRESS A KEV
 ヨi36 PRINT RT 3，B，＂DO YOE EAPST I T ON TAPE（Y／N）？




3150 PAUSE 2ae

OF PROGRPH PRESS FECRRET BN：FE
PY THEN NELH INE
2180 INPUT 1 方
ㄹ․90 SAUE Nは

ミ2iด GOTO 2ЗG

 SCFREEN

3010 GOTO \(3010+612\) ANE THKEV \(\$=" N\)

3020 PRINT AT Q．Q；S弓
3030 GOTO 230
3040 CLS
3056 GUTO 30


PROGRAM（Y／N）？


\(40 \geq 0\) PRINT AT 6，家；车
4030 GOTO 230
4040 CLS
4050 PRINT AT 9．12：＂3HETEH PAD＂


507Q PRINT ．．＂ANY PROGRA！TO LDA

 5090 PRINT. ＂PRESS ANT KET TO D RA以＂

 5129 GOTO 3 a



\title{
Computer aidec instruction
}

A computer can be quite useful in educational situations, especially when the production of randomly chosen questions is needed. This program which asks the student to identify capital cities can easily be adapted to deal with a variety of subjects.


\section*{Education}

This program picks 10 countries at random，asking the user in each case to name the capital ci－ ty of that country．It gives a score out of 10 at the end of the round（line 430）then gives the
user the option of either ter－ minating the run，or of going through another 10 questions．

There is no mechanism within the program to ensure that the same city is not asked
for more than once in a run．The program does，however，give the correct answer if the student was wrong． To adapt the program for
er subjects，change the To adapt the program for
other subjects，change the
specific question asked（the routine from line 180）and－of course－the＇questions＇and ＇answers＇given from line 1040.
```

120
\042 LET A市=*SRMEODINH
1042 LET E生="PH:NC採 PENH*
1045 RETURN
2050 LET A$="SOLIUIA"
1050 LET A$=`"EOLIU
205S RETUON
2055 RETUON ."CLSE.
2060 LET A京="CLEG"
RQES RETURN
Q LET A\$="AFSHANISTAN*
LO
1074 RETURN
1080 LET A古="ANGOLA"
L080 LET A束="'ANGOLA,"
1085 RETURN
2090 LET A事="FUSTRIA"*
LET, E虫="UIENNA"
RETURN
LET A串="\varthetaIETNPM"

```

```

 LET E名="HFiNGZ
 RETURN
 LET A串="URU心UA゙Y"
 LET E車="MONTEUIDEO"
 RETURN
 LET F& = "UGANDA'
 LET E串="KAMPA&A"
 RETURN
 LET F$= "THAILFIND"
 LEETESN="EANGKKGK..
 LET A串="SUITZERLAND"
 RETURN
1030
2040
LET A＊

```
\begin{tabular}{|c|c|}
\hline \[
142
\] & LET E事－＂BLRT RETURN \\
\hline 1150 & LET F\＄\(=\)＂SRI LANKF＂ \\
\hline 115 2 & LET E事＝＂COLOMBC＂ \\
\hline 1155 & RETURN \\
\hline 1160 & LET A串 \(=\)＂SPAIN＂ \\
\hline 163 & LET E禹 \\
\hline 165 & RETURN \\
\hline 1170 & LET Я事 \(=\)＂POMANIA＂ \\
\hline 1172 & LET E禹＝＂EUC \\
\hline ， & RETURN \\
\hline 180 & LET A串＝＂PANAMA＂ \\
\hline 182 & LET E事＝＂PANAMA＂ \\
\hline 185 & RETURN \\
\hline 190 & LET A串 \(=\)＂MEXICO＊ \\
\hline & LET És＝＂MEXICO CIT \\
\hline 5 & RETURN \\
\hline \(0 \cdot\) & LET A串 \(=\cdots\) UENEZUELA \({ }^{\text {U }}\) \\
\hline －25 & LET S事＝＂CF \\
\hline 2205 & RETURN \({ }^{\text {RET }}\) \\
\hline 1 이0 &  \\
\hline 1これこ & LET E事＝＂KİGSTON＂ \\
\hline 1215 & RETURN \\
\hline 12 ¢0 & LET A\＄＝＂DENMAKK \\
\hline 122コ & LET E事 \(=\)＂CUPEiviafiveiv \\
\hline 1 2 & RETURN \\
\hline 230 & LET A串 \(=\)＂ECUAD \\
\hline \[
1233
\] & LET S事＝＂ふUITO \\
\hline 1235 & RETURN \\
\hline 1240 & LET A事＝＂FIUI。 \\
\hline 1243 & LET S里＝＂ELUO＊ \\
\hline 1245 & RETURN \\
\hline
\end{tabular}
```

```
    10 REM CAPITALS OF THE WORLO
```

```
    10 REM CAPITALS OF THE WORLO
    20 REM (C) HARTNELL 1982
    20 REM (C) HARTNELL 1982
    25 LET SCORE=0
    25 LET SCORE=0
    30 SCROLL
    30 SCROLL
    40 PRINT "I WILL NFME 10 COUNT
    40 PRINT "I WILL NFME 10 COUNT
RIES AND.
RIES AND.
    50 SNROL
    50 SNROL
    60 PRIINT "YOU HAUE TO TARME THE
    60 PRIINT "YOU HAUE TO TARME THE
IR CAPITALS
IR CAPITALS
    BQ SCROLL . PRINT THT THE END YOU WILL
    BQ SCROLL . PRINT THT THE END YOU WILL
SE GIUEN \(A^{\prime}\)
SE GIUEN \(A^{\prime}\)
    90 SCROLL
    90 SCROLL
    100 PRINT "SCORE OUT OF \(10 .\).
    100 PRINT "SCORE OUT OF \(10 .\).
    10 SCROLL
    10 SCROLL
    130 SCROLL ". PRESS NEWLINE,FRETURN
    130 SCROLL ". PRESS NEWLINE,FRETURN
    WHEN"
    WHEN"
    135 SCROLL. YOU ARE READY TO OO.
    135 SCROLL. YOU ARE READY TO OO.
        i50 INPUT U\$
        i50 INPUT U\$
        150
155
SCROUL
156
        150
155
SCROUL
156
        15E SCROLL
        15E SCROLL
        \(160 \quad F O R \quad A=1\) TO 10
        \(160 \quad F O R \quad A=1\) TO 10
    165
\(26 ?\) PRRDNT "QUESTION NUMEER " : \(A\) :
    165
\(26 ?\) PRRDNT "QUESTION NUMEER " : \(A\) :
    \(\begin{array}{ll}165 & \text { SCROLL "QUESTION NUMEER " } \\ 26 ? \text { PRINT }\end{array}\)
    \(\begin{array}{ll}165 & \text { SCROLL "QUESTION NUMEER " } \\ 26 ? \text { PRINT }\end{array}\)
    370 GQSUE \(10 Q 0\)
    370 GQSUE \(10 Q 0\)
    ITS SCROLL . WRINT "WHAT IS THE CAPITAL"
    ITS SCROLL . WRINT "WHAT IS THE CAPITAL"
        SRINT WHAT IS THE EAPIFAL
        SRINT WHAT IS THE EAPIFAL
        SCROLL TAB E; "OF "; A串: "?
        SCROLL TAB E; "OF "; A串: "?
        INPUT U事
        INPUT U事
        SCROLL
        SCROLL
        IF U事=B里 THEN PRINT "YES
        IF U事=B里 THEN PRINT "YES
        IS CORRECT'
        IS CORRECT'
        IF U゙\$=E\& THEN LET SCORE=SCO
        IF U゙\$=E\& THEN LET SCORE=SCO
        E + 2 TF U
        E + 2 TF U
        こ40 IF U\$く BE言 THEN PRINT "NO. T
        こ40 IF U\$く BE言 THEN PRINT "NO. T
        250 SCROLL
```

```
        250 SCROLL
```

```

    SaC SCROLL
    310 SCROLL
    320 PRINT "STAND EY"
    340 FOR \(G=2\) TO 24
    350 FOR H=1 TO 5
    355 NEXT H
    359
379
    380
390
SCROLL
390
    400 SCROLL .. YOUR TUTFL SCORE WAS
410 PRINT
    \(\begin{array}{ll}43 Q & \text { SOROLL } \\ 43 Q & \text { PRIN TAB 4: SCORE; " OUT OF }\end{array}\)
    \(10 .{ }^{\circ}\) " SORO1
    440 SEROLL
    450 SCFOLL
    450 PRINT "DO YOU WFNT FINOTHER
    \(4 \geq 0\) INPUT U事
    475 CLS
    \(\triangle B E\) IF CODE (U\$) ( \(\angle C D D E\) "N" THEN
    RUN
    490 SCROLL
    500 ERINT "OK, EYE FOR IVOW"

    1010
    \(20 \leq 0\)
    20こ
    GOSUE K
    RET
    JRN

\section*{Software Review}

\section*{The chess giants grapple \\ \\ Sinclair Research is selling a chess \\ \\ Sinclair Research is selling a chess program for the ZX81, developed by program for the ZX81, developed by Psion/Microgen. Reviewer Nick Psion/Microgen. Reviewer Nick Pearce tried it out, and played it off Pearce tried it out, and played it off against Artic's Chess 11.} against Artic's Chess 11.}


Originally I intended just to review the Psion program, as part of my review of the new Sinclair ZX81 software, but decided that a comparison with ZX Chess 11 by Artic, fast becoming the standard for ZX chess, would be more appropriate. The comparison, although interesting, is perhaps a little unfair. Chess 11 currently retails at \(£ 9.95\), while the Psion program, together with CHESS CLOCK on the other side of the cassette, sells for \(£ 3.00\) less.

Both programs display the board on the screen, and pieces
are represented by letters, K for King, Q for Queen, B for Bishop and so on, with the colour of the piece being the colour of the displayed letter, inverse letters for black pieces.

Both games use the standard algebraic system of chess notation for the board co-ordinates, although the Artic program is the only one which actually puts these co-ordinates on the screen.

The Artic board is always displayed the same way up, no matter which end the human is playing from, while the Psion
board is shown with the player at the bottom. I feel this makes the Psion program rather easier to play.

Although I expected to, I did not find the lack of co-ordinates on the screen a disadvantage, as I found with both programs it was only really possible to play a normal game by having a proper board set up beside the TV anyway.

Both programs give you the option of setting up a game position. The Artic program requires you to set up a piece by first defining the co-ordinates, then entering a code for the piece you want there. On the Psion board, you use a cursor ( \(=\) ) to move pieces around the board.

A deficiency with the Psion program for the serious player is the lack of a 'game save' facility, which the Artic program includes. Psion's also lacks the ability to
print out a copy of the screen at any time, or a list of moves.

Against this, I particularly liked the Psion feature of being able to resign at any time to start a new game. If you get fed up with a game on the Artic program, you have to either continue to the bitter end, or switch off and reload to start a new game.

So much for the immediately apparent differences between the two programs. I'll look now at how well they actually play.

Both allow castling and enpassant moves, and neither permits illegal moves. I do not play a particualrly good chess game, and consequently found both programs hard to beat, even on the lowest levels.

Both games seemed to go for check whenever possible, even if they were not in a position to sustain an effective attack. During one game with the Psion program,

the program repeatedly went for check from a losing position, and in so doing sacrificed its remaining valuable pieces. This left me with an overwhelming piece advan-
tage, from which I was able to win easily. However, this was a rather unusual finish to a game against the Psion program. In most games I played, the Psion program put up

a good, solid defence, and was not easy to beat.

In order to obtain a comparison between the two programs, a friend lent me his ZX81, and I played one program against the other.

The levels of play of each program are related to the time taken to respond to a move, and are not directly compatible between the two programs.

I rang the changes between the three easiest Artic, and the two easiest Psion, levels of play.

I must stress that this comparison is a little unfair, as the Psion does not claim to play chess to the standard of the more expensive Artic game.

As you may have anticipated, the Artic program played the stronger game. To Psion's credit, three of the ten games were held to a draw. Artic won six, Psion won one.

In a game between Psion on the ZX81, playing white, and Sargon 11 on Tandy, Sargon won, but took some 45 moves to do so. Both played at level one.

Both the Psion and the Artic chess programs play a reasonable game. The Artic program plays a stronger, more sophisticated game, and with its save and move

 \(-C 8\)
\(-A 8\)
\(-G E\)
\(-F=\)
\(-D 8\)
\(-G 8\)
\(-B E\)
\(-E 8\)
\(-E 4\)
\(-C 5\)
\(-B 8\)
\(-A 6\)
\(-G 5\)
\(-G 7\)
\(-F 8\)
\(-G 6\)
\(-D 8\)
\(-G 7\)
\(\times E 5\)
\(-F=\)
\(-E 8\)
\(-D ?\)
\(-C S\)
listing features will be the more attractive for serious users. For the casual player, who wants just an occasional game of chess, Psion is a reasonable alternative. The Psion program is more userfriendly, and I particualrly liked its 'resign' facility.

There is little doubt that most ZX81 owners will learn a bit more about their computers, and the game of chess, through playing against any of these programs.

On the B side of Psion's chess is CHESS CLOCK. This simulates the clock used in tournaments to limit the amount of time taken for each move. Two digital readouts display the time taken by each player.

I thought that CHESS CLOCK was a bit of a gimmick, and unlikely to be used seriously. There might be a few dedicated players who would be prepared to use a ZX81 and a television to timekeep during serious games.

I thought the Sinclair advertisement for CHESS CLOCK somewhat misleading. It cannot be used at the same time as the chess program itself as it implied by the statement " . . . can be used at any time", unless you happen to have two television sets and two ZX81s.


\title{
Making your 2X work
}

\section*{When you're ZX81 gets tired of zapping invaders, you can put it to work with the following utility programs.}


\section*{APPROXIMATE DEFINITE INTEGRAL}

This program enables you to work out a definite integral by using Simpson's rule. You follow the prompts given, entering the function to be used in line 30.


\section*{Sample run:}


POISSON DISTRIBUTION
Using this routine, you can determine the probability at a point which we'll call X , and the
cumulative probability from zero to X . The sample run given uses a value of 6 for \(M\), and 8 for \(X\). The probability, f , is given at the end, as is the cumulative probability, L(P).


\section*{Sample run:}


\footnotetext{
\(=\) = 0.10325773
\(-(P)=0.84723749\)
}

\section*{ZX81 Programs}

AREA CALCULATOR
This program works out the floor area of a house, in order to determine how much carpet is required to cover it. Just follow the prompts given.


\section*{Sample run:}
HOW MANY ROQMS?
NHT IS LENSTH DF ROQM \(2 ?\)
WHAT IS WIDTH OF ROQM \(2 ?\)
AREA OF ROOM 2 IS 180

\section*{TAURUS COMPUTER DESIGN}

Our SPECTRUM games are now availabie (Mastermind, Atoms. (-Game etc.)

SPECTRUM utities salaties foon. Wrise to detals
Our product range tor the ZX81 i as follows
raunus sk phomcand
- Fals memory rosce ax-100
-roused with zxolcase easy muta aton

Ioeal home for TAuRUS SOLID SOFTWARE:
taunus tok rampack
- User switchabie Model A 10K RAN or 14K RAM-ZK P9OM (2716) Moder B 10 K RAM or TKK RAM-AK PROM \((2723\)
- Flevible comection to ZX (1)-eliminates memory wceoua
- Idea home for TAUMUS SOLiD Sor TWARE
taurus machine-cooe moniton
erson 1
16 user utury commands
Optinued to deverliping and testing machine code
Ano aralasie on casseltid SOrTWARE' on al TAURUS navonere products
werson 2
-As Verson 1-Machine cooe disassembler
- Displays addresa her matructon bytes source cose

Stidaro x-80 mimenotr
Reiative pimbe ghow will absolide adsresses

\section*{GRAPHICS EDITOA}

Make your own character shapes- whatever you want
- inclubes routine for switching character sets

Tho new character sets pronded including lower case
yon then
machine-code assembler
Sandard \(2-80\) : mnemonics
- Optomsed tor \(2 \times 81\) kepooard layou
- Analibile as taunus solid sortwara
- Aliso mainibie on cassette

\section*{PRODUCT SUMmaR}


Send for detals or cheque witr TAURUS COMPUTER DESIGN 47 High Street, Baldock. Hertlordshire SG76BG Teiephone Baisock (0462) 593900

AND THE TOTAL AREA SO FAR
WHAT IS LENGTH OF ROQM 2 ? WHAT IS WIDTH OF ROOM 2 ? AREA DF ROOH 2 IS 120 AND THE TOTAL AREA 50 FAK
WHAT IS LEIVGTH OF RQQM 3 ?
WHAT IS WIDTH OF ROOM 3 ?
AREA DF ROOM 3 IS IO4
AND THE TOTAL ARER

TYPING TUTOR

This program generates a letter of the alphabet at random and then gives you a limited time to find it. The program will tell you if you're right, wrong, or have just taken too long. Once you've mastered it in its present form, decrease the
length of the a loop (line 100). The listing here is for the Spectrum,. but it is easy to modify for the ZX81. Use upper case A in the loop counter and A\$ (you haven't any choice, anyway, on the ZX81); change the colon in lines 130 and 140 into a semi-colon, and replace the word STOP with the letter \(Q\).


\section*{ADVERTISEMENT INDEX}
\begin{tabular}{|c|c|}
\hline Adaptors Eliminations . . . . . 54 & Microcomputer Software \\
\hline Addictive Games . . . . . . . . 102 & Microware . . . . . . . . . . . . 107 \\
\hline Afdec Electronics . . . . . . . . 34 & Microz. . . . . . . . . . . . . . . . 110 \\
\hline A. G. Fosberry . . . . . . . . . . . 71 & Microgen . . . . . . . . . . . . . . 58 \\
\hline Artic Computing . . . . . . . . . 64 & Moviedrome . . . . . . . . . . . 58 \\
\hline Bi-Pak . . . . . . . . . . . . . . . . 44 & D. J. Moody \\
\hline Buffer Micro . . . . . . . . . . . . 18 & Newsoft Products . . . . . . . . 54 \\
\hline Cases Computer & Nimrod Software . . . . . . . . 54 \\
\hline Simulations . . . . . . . . . . . . 87 & Oasis Software . . . . . . . . . . 107 \\
\hline Cobra Technology . . . . . . . 30 & Personal Software \\
\hline D. K. Tronics . . . . . . . . . . . . . 23 & Servi \\
\hline D. J. Moody . . . . . . . . . . . . . 18 & Panda Software . . . . . . . . . . 44 \\
\hline East London Robotics . . . . . 96 & Peter Furlong Products . . . . 58 \\
\hline Fuller Micro Systems . . . . . 131 & Philip Copley \\
\hline Gemini Marketing . . . . . . . . 86 & Phipps Ass. . . . . . . . . . . . . . . 110 \\
\hline Giltrole Ltd . . . . . . . . . . . . . . . 96 & Picturesque . . . . . . . . . . . . 110 \\
\hline Grundy . . . . . . . . . . 126 \& 127 & Quicksilva . . . . . . . . . . . . . . . 132 \\
\hline Hilderbray Ltd . . . . . . . . . . . . 81 & Richard Altvasser . . . . . . . . . 18 \\
\hline Holly Products . . . . . . . . . . . 70 & Richard Shepherd. . . . . . . . . 39 \\
\hline Interface . . . . . . . . . . . . 55 \& 70 & Rose Cassettes . . . . . . . . . . . . 87 \\
\hline Ivor Killerbyte . . . . . . . . . . . . 96 & Scisoft Ltd . . . . . . . . . . . . . . . . 96 \\
\hline J. K. Greye Software . . . . . . . 102 & Shiva Publishing Ltd . . . . . . . 87 \\
\hline J. P. Gibbons . . . . . . . . . . . 110 & Sinclair Research. . . . . . . 6 \& 7 \\
\hline John Prince . . . . . . . . . . . . . 64 & Silversoft . . . . . . . . . . . . . . . . 92 \\
\hline JRS Software . . . . . . . . . . . . . . 86 & Software Masters . . . . . . . . 117 \\
\hline Kayde Electronics . . . . . . . . . 3 & Storkrose Ltd \\
\hline Melbourne House Pub. .... 77 & Taurus Computer Design ... 64 \\
\hline Memotech . . . . . . . . . . . . . . 11 & Iransform . . . . . . . . . . . . . . 81 \\
\hline Michael Orwin . . . . . . . . . . 44 & V \& H Computer Service . 102 \\
\hline Microbyte . . . . . . . . . . . . 70 & Video Software . . . . . . . . . . 86 \\
\hline
\end{tabular}

\title{
A Picturesque is worth a thousand words
}

\section*{A number of 'tool kits' are available to make it possible to write better programs on the ZX81. ZX Computing staff look at two of them, Screen Kit 1 from Picturesque and Craphics toolkit from JRS Software.}


Screen kit 1 is an attractively packaged screen toolkit from 'Picturesque' sold by mail order for \(£ 5.70\). It consists of a number of machine code routines to help a ZX81 user smarten up his graphics in a BASIC program.

The cassette inlay and instruction card are tidily presented in blue, well printed and easy to read. From its smart appearance I assumed it would LOAD first time but I was not so lucky. On playing back the tape through the loud-
speaker I discovered the dsignal was a little noisy and /was not recorded at a suffi 1 geiently loud volume. Alter wedging a small piece of paper under the cassette (1) and setting the highest volume, level on my cas
sette recorder it LOADed easily.
Screen Kit 1 has eight facilities four-way scrolls; CLS; Borders; CPS; Reverse; Cursors; Memory and SAVE/LOAD.

The SAVE and LOAD facilities are perhaps the most useful, being at double speed. All the routines are accessed from BASIC via USR statements \&

POKE commands. The instruction card is A4 size, double sided and folded in half with compressed text printed in Black. In this way Picturesque have managed to get some pretty comprehensive and detailed instructions onto a single sheet.

The first four commands scroll the screen in the appropriate direction. One POKE adjusts how many scrolls will be actioned before returning to BASIC. For instance, to scroll the screen five times to the left simply POKE 16661,5 then RAND USR 16660. The unfortunate thing about the scrolls in Screen Kit 1 is that they do not wrap-around ie the characters lost at the edges of the screen do not reappear at the opposite edge. Wrap-around scrolls are far more useful in that you can do continuous backgrounds that are constantly moving but do not need to be updated because it wraps around the screen. The principal is quite similar to a 1920 s westerns where the Sheriff would run on a conveyor belt and behind him would be the background painted on a giant canvas sheet that


\section*{Software Review}
would be rotated like a belt (thus one always saw the same scenery go past again and again!)

\section*{Clearly Crashed}

Screen Kit 1 also provides a CLS facility which can be used to overcome the slowness of the ROM's routine. Instead of the usually slow CLS where the characters can be seen to be changed spaces from top to bottom, the Picturesque CLS is good, instant clear screen which is far tidier. CLS also has a second use. If you poke 16863 with a character code, that character will be used instead of spaces in the CLS routine. Unfortunately Screen Kit 1 has no error checking routine at all so if you POKE an invalid character code into 16863 and then access the CLS routine then the program crashes. This sort of defect can be very annoying and doesn't show a very thorough approach to the product.

The BORDERS routine is quite impressive in that it is a fast way of drawing boxes on the screen. You have to specify the line and column position of the top left hand corner and also the height and width inside the border. This requires four POKES which is really quite a lot of typing for a single command. CPS is simply a CLS for a specified part of the screen, the POKEs are the same as those used in the Border command. Clearing part of the screen is not something that is a vital aid to the Graphics programmer. It does have its uses but not that many.

The next command is a useful function. It changes part of the screen into inverse video, which in loop would make a very straightforward way of highlighting areas of the screen but for the five lines of BASIC code required every time this operation is needed. The next command is called CURSOR and here is a quote from the manual: "Simulates INPUT, but gives you a flashing cursor". What actually happens is that it flashes a black blob on the screen which disappears when a key is pressed. The character code of the key pressed is returned. To say that it simulates INPUT is not quite accurate; more correctly, it could be described as INKEY\$ with flashing blob!

Typing PRINT USR 16886 returns a figure which is the free memory in bytes. The SAVE \& LOAD routines are the most useful part of the package. They operate at double speed and are used for storage of variables on tape. No file names are allowed so that rules out a tape filing system for a database program, where it could load up a selected file from,
say, twenty on one tape.
This is a pity since the double speed SAVE \& LOAD in their machine code monitor 'ZC-MC' allow single letter file names. When I tried the routines for Sinclair's SAVE \& LOAD and a similar pattern appeared on the screen, except the bars were narrower. The SAVE \& LOAD routines are a reason to buy the package in themselves.

\section*{Plotting Power}

The SAVE and LOAD routines are very good and very useful, being at double speed for the variables, but bear little relation to the title Screen Kit 1. Perhaps they should have called it 'Programmers toolkit'. As Screen Kit 1 is stored in a REM statement it becomes part of your program, which has the advantage that it doesn't need to be loaded above RAMTOP every time you want to use it. But it does mean that if you start writing a program and decide you need Screen Kit 1 and haven't already LOADed it, then to merge it with your own program is a very complicated process described in 27 steps in the instrucions

Despite this, it is a very useful package overall, and one which will enable you to produce much more professional looking programs.

\section*{Graphic Toolkit}

Graphics Toolkit is sold by mail order from JRS Software at a cost of \(£ 5.95\). This includes VAT and Postage. Like Screen Kit 1, it consists of a number of machine code routines to help the BASIC programmer smarten up his graphics.

The cassette is a studio produced type and the quality is of a good standard because the signal is 'processed' by the studio. The packaging is not as smart as that of Picturesque, but the instructions consist of two sheets of double sided, compressed A4 as opposed to one. They go to the same depth as Picturesque's instructions but cover an extra eleven functions.

Graphics Toolkit has twenty three routines:

\author{
DRAW \\ FOREGROUND ON \\ BORDER \\ FILL \\ UP \\ LEFT \\ EDITPRINT \\ DOWNSCROLL \\ RIGHTSCROLL \\ OFFSCREEN \\ BACKGROUND OFF SQUARE
}

\footnotetext{
The most powerful and useful feature is the DRAW command. It
}
allows the user to define a multicharacter shape in a REM statement and then DRAW or UNDRAW it at any point on the screen. It will draw a shape of any size instantly and so is ideal where fast moving graphics are required. The shape is defined in a REM using characters, (the ones to be printed), and direction codes (to indicate where each character is to be placed). For instance, to define a simple square:

\section*{10 REM A SQUARE:}

The user may place his own label first (in this case it is ' \(A\) SQUARE') then there is a colon to tell Graphics Toolkit that the definition is starting. Then comes the first character, followed by a \(<\) (greater than) indicating that the next character is to be placed to the right of the previous one. A less than sign means move left, a ' \(V\) ' means move down and an ' \(A\) ' means move up. The FOREGROUND ON/OFF facility provides an added effect when used with DRAW \& UNDRAW. When foreground mode is on, the shapes that are moved around the screen appear to move behind graphics already on the screen.

A demonstration is provided on the cassette, in which a predefined snake moves behind a cactus. Any number of shapes can be defined and used because one POKE before the DRAW command sets the line number of the appropriate shape. The BORDER command is not the same as the Screen Kit. Instead of drawing a one pixel wide border anywhere on the screen, it draws an instant border around the edge of the screen using any character.

Only the bottom line position is variable. This is so you have the choice of using all 24 lines of the screen or leaving the bottom two free as a sort of 'text window'. UNBORDER simply removes the border. EDITPRINT allows you to use that window; it moves the print position to the top edit line which is normally inaccessible from PRINT.

\section*{Giving Ground}

FILL does exactly what it
UNDRAW
FOREGROUND OFF
UNBORDER
REVERSE
DOWN
RIGHT
UPSCROLL
LEFTSCROLL
ONSCREEN
BACKGROUND ON
SEARCH \& REPLACE
decides the line to start filling from and how many lines to fill. On this, as on all commands there is full error checking so that if you try to use an invalid character or FILL off the bottom of the screen it gives an error code in the usual format Code/Line No. An actual error message system would have been more helpful but codes are better than nothing. REVERSE is similar to Screen Kit 1's command of the same name, in that it changes part of the screen to inverse Video.

FOREGROUND mode affects both FILL \& REVERSE; if Foreground mode is on, only Foreground characters will be changed. Foreground characters count as anything which isn't a Background character. Sounds confusing, doesn't it?

Background is set by BACKGROUND ON. This clears the screen to character of your choice and selects it as your Background. That is similar to the PAPER system on the Spectrum. The Foreground characters can be anything else. For instance, you have 30 inverse asterisks randomly placed on the screen, the Background being fullstops.

When a REVERSE command is done with Foreground on, the asterisks will be changed to ordinary asterisks but the fullstops would be left unchanged.

The Scrolls wrap-around the screen, making some interesting effects possible. I created the effect of moving through space by randomly printing fullstops on the screen, REVERSEing the whole screen and then just repeatedly DOWNSCROLLing it, ideal for a space game!

An interesting facility is ONSCREEN \& OFFSCREEN. They turn the screen on and off respectively, not as in FAST mode but by a clever technique which uses no extra memory.

As they are instant, the screen can be flashed in a loop to give a quite stunning effect. SEARCH\&REPLACE searches on the screen for a chosen character and replaces it with another character. This would take quite sometime in BASIC but with Graphics Tookit it operates immediately. The uses of this are not obvious, nor varied, but really depend on the user's imagination. SQUARE is quite similar to Screen Kit 1's BORDER command but far slower.

\section*{Conclusion}

Graphics Toolkit has far more routines than Screen Kit 1 but lacks double speed LOAD \& SAVE, Good value at \(£ 5.95\).
says. It fills a portion of the screen with a chosen character. The user, by way of two POKEs

Don't let its size fool you. If anything NewBrain is like the Tardis.

It may look small on the outside, but inside there's an awful lot going on.

It's got the kind of features you'd expect from one of the really big business micros, but at a price of under \(£ 200\) excluding VAT it won't give you any sleepless nights.

However, let the facts speak for themsetves.

You get what you don't pay for.
NewBrain comes with 24 K ROM and 32 K RAM, most competitors expect you to make do with 16 K RAM.

What's more you can expand all the way up to 2 Mbytes, a figure that wouldn't look out of place on a machine costing ten times as much.

We've also given youthe choice of \(256,320,512\) and \(640 \times 250\) screen resolution, whereas most only offer a maximum of \(256 \times 192\).

Big enough for your business. Although NewBrain is as easy as ABC touse (andchild's-play tolearntouse) this doesn't mean it's a toy.

Farfromit.
It comes with ENHANCED ANSI BASIC, which should give you plenty to get your teeth into.

And it'll also take \(\mathrm{CP} / \mathrm{M}^{8}\) soit speaks the same language as all the big business micros, and feels perfectly at home with their software.

\title{
NO OTHER MICRO HAS THIS MUCH POWER INTHIS MUCH
} SIZE FOR THIS MUCH MONEX

NewtBrain
 comes into its own.

The video allows 40 or 80 characters per line with 25 or 30 lines per page. giving a very professional 2000 or 2400 characters display in all on TV and/or monitor. And the keyboard is full-sized so even if youre all fingers and thumbs you'll still be able to get to grips with NewBrain's excellent editing capabiities.

When it comes to business graphics, things couldn't be easier. With software capabilities that can handle graphs, charts and computer drawings you'll soon be up to things that used to be strictly for the bigleague.

\section*{Answers a growing need.}

Although NewBrain, with its optional onboard display, is a truly portable micro, that doesn't stop it becoming the basis of a very powerful system.

The Store Expansion Modules come in packages containing \(64 \mathrm{~K}, 128 \mathrm{~K}, 256 \mathrm{~K}\) or 512 K of RAM. So, hook up four of the 512 K modules to your machine and you've got 2 Mbytes to play with. Another feature that'll come as a surprise are the two onboard V24 interfaces.

With the aid of the multiple
V24 module this allows you to run up to 32 machines at once, all on the same peripherals, saving you a fortune on extras.

The range of peripherals on offer include dot matrix and daisy wheel printers, \(9,12^{\prime \prime}\) and \(24^{\prime \prime}\) monitors plus \(5 /^{*}\) floppy disk drives ( 100 Kbytes and 1 Mbyte ) and \(5 \%\) " Winchester drive ( \(6-18 \mathrm{Mbytes}\) ).

As we said, this isn't a toy.
it doesn't stophere.
Here are a couple of extras that deserve a special mention.

The first, the Battery Module, means you won't be tied to a 13 amp socket. And, even more importantly, it means you don't have to worry about mains fluctuations wreaking havoc with your programs.

The ROM buffer module gives you a freedom of another sort:-

Freedomto expandinabig way it gives you additional ROM slots, for system software upgrades such as the \(Z 80\) Assembler and COMAL. 2 additional V24 ports, analogue ports and parallel ports.

From now on the sky's the limit.

\section*{Software that's hard to beat.}

A lot of features you'd expect to find on software are actually built into NewBrain soyoudon'tneedtoworryabout screen editing, maths, BASIC and graphics.

However, if you're feeling practical you canalwaystacklehouseholdmanagement, statistics and educational packages. And because NewBrain isn't all work and no play, there's the usual range of mindbending games to while away spare lime.

\section*{Waste no more time.}

To get hold of NewBrain you need go nofurther than the coupon at the bottom of thepage.

With your order we'll include a hefty instruction manual so you'll know, where to start, and a list of peripherals, expansion modules, and software so you'll know where to go next.



Dealer enquiries invited. please contact-
NewBrain, Grundy Business Systems Lta. Gruncy House, Somerset Road, Vedaington TW W11 8TD
Each NewBrain order will include a FREE comprehensive user manuat a catabgue of expansion modiles and peripherals, and a detaled ist of avalable sotware.
Please sendme the following:-
\(\qquad\)
are not lost when the \(\mathrm{ZX81}\) is turned off.
Syntax check
The syntax of a line of program is checked on entry. A syntax error cursor marks the first place the syntax breaks down if there is an error. The syntax error cursor disappears when errors have been corrected. Only lines free from syntax errors will be entered into the program.
Graphics
Apart from the 20 graphics characters, space and its inverse, the display may also be divided into \(64 \times 44\) pixels, each of which may be 'blacked' in or 'whited' out under program control.
Editing
A line editor allows you to edit any line of program or input, including program line numbers. Lines may be deleted, increased or decreased in size.
Arithmetic
Arithmetic operators,,\(+- x_{,}+\), exponentiate. Relational operators \(=,\langle \rangle,\rangle,<,<=\rangle=\), may compare string and arithmetic variables to yeild 0 (False) or 1 (True). Logical operators AND, OR, NOT yield boolean results.
Floating-point numbers
Numbers are stored in 5 bytes in floating-point binary form giving a range of \(\pm 3 \times 10^{-3 \prime}\) to \(\pm 7 \times 10^{3 *}\) accurate to \(91 / 2\) decimal digits.
Scientific functions
Natural logs/antilogs; SIN, COS, TAN and their inverses;SQR; ex.
Variables
Numerical: any letter followed by alphanumerics String: FOR-NEXT loops:

Numerical arrays: String arrays:

\section*{As to \(\mathrm{Zs}_{8}\)}

A-Z floops may be nested to any depth. A-Z
As to Zs

Arrays
Arrays may be multi-dimensional with subscripts starting at 1.

\section*{Expression evaluator}

The full expression evaluator is called whenever an expression, constant or variable is encourtered during program execution. This powerful feature allows use of expressions in place of constants and is especially useful in GOTO, GOSUB etc.
Command mode
The ZX81 will execute statements immediately, enabling it to perform like a calculator.
Cassette interface
Works using domestic cassette recorders. The transfer rate is 250 baud and uses a unique recording format not compatible with other systems. The ZX81 will save the data as well as the program to avoid the need to re-enter the data when the program is next loaded.
Z \(\times 81\) will search through a tape for the required program). The cassette leads supplied have 3.5 mm jack plugs.
Expansion port
At the rear, this has the full data, address and control buses from the Z80A CPU as well as OV \(,+5 \mathrm{~V},+9 \mathrm{~V}, \bar{\varnothing}\) and the memory select lines. These signals enable you to interface the ZX81 to the Sinclair 16K RAM pack and ZX printer.
Power supply
The ZX81 requires approximately 420 mA at \(7-11 \mathrm{~V}\) DC. It has its own internal 5 V regulator. The ready assembled ZX 81 comes complete with a power supply. The ZX81 kit does not include a power supply.

TV standard
The ZX81 is designed to work with UHF TVs (channel 36) 625 lines.

\section*{ZX SPECTRUM}

\section*{Dimensions}

Width 233 mm
Depth 144 mm
Height 30 mm

\section*{CPU/Memory}

Z80A microprocessor running at 3.5 MHz .16 K -byte ROM containing BASIC interpreter and operating system.
16 K -byte RAM (plus optional 32 K -byte RAM on internal expansion board) or 48 K -byte RAM.

\section*{Keyboard}

40-key keyboard with upper and lower case with capitals lock feature. All BASIC words obtained by single keys, plus 16 graphics characters, 22 colour control codes and 21 user-definable graphics characters. All keys have auto repeat.

\section*{Display}

Memory-mapped display of 256 pixels \(\times 192\) pixels; plus one attributes byte per character square, defining one of eight foreground colours, one of eight background colours, normal or extra brightness and flashing or steady. Screen border colour also settable to one of eight colours. Will drive a PAL UHF colour TV set, or black and white set (which will give a scale of grey), on channel 36.

\section*{Sound}

Internal loudspeaker can be operated over more than 10 octaves (actually 130 semitones) via basic BEEP command. Jack sockets at the rear of computer allow connections to external amplifier/ speaker.

\section*{Graphics}

Point, line, circle and arc drawing commands in high-resolution graphics.
16 pre-defined graphics characters plus 21 user-definable
graphics characters. Also functions to yield character at a given position, attribute at a given position (colours, brightness and flash) and whether a given pixel is set. Text may be written on the screen on 24 lines of 32 characters. Text and graphics may be freely mixed.

\section*{Colours}

Foreground and background colours, brightness and flashing are set by BASIC INK, PAPER, BRIGHT and FLASH commands. OVER may also be set, which performs an exclusive - or operation to overwrite any printing or plotting that is already on the screen. INVERSE will give inverse video printing. These six commands may be set globally to cover all further PRINT, PLOT, DRAW or CIRCLE commands, or locally within these commands to cover only the results of that command. They may also be set locally to cover text printed by an INPUT statement. Colour-control codes, which may be accessed from the keyboard, may be inserted into text or program listing, and when displayed will override the globally set colours until another control code is encountered. Brightness and flashing codes may be inserted into program or text, similarly. Colour-control codes in a program listing have no effect on its execution. Border colour is set by a BORDER command. The eight colours available are black, blue, red, magneta, green, cyan, yellow and white. All eight colours may be present on the screen at once, with some areas flashing and others steady, and any area may be highlighted extra bright.

\section*{Screen}

The screen is divided into two sections. The top section - normally the first 22 lines - displays the program listing or the results of program or command execution. The bottom section - normally the last 2 lines - shows the command or program line currently being entered, or the program line currently being edited. It also shows the report messages. Full editing facilities of cursor left, cufsor right, insert and delete (with auto-repeat facility) are available over this line. The bottom section will expand to accept a current line of up to 22 lines.


\section*{Mathematical Operations And Functions}

Arithmetic operations of,,\(+- \times,+\), and raise to a power. Mathematical functions of sine, cosine, tangent and their inverses; natural logs and exponentials; sign function, absolute value function, and integer function; square root function, random number generation, and pi.
Numbers are stored as five bytes of floating point binary - giving a range of \(+3 \times 10^{-39}\) to \(+7 \times 10^{38}\) accurate to \(91 / 2\) decimal digits. Binary numbers may be entered directly with the BIN function. \(=\), \(>,<,>=,<=\) and \(<>\) may be used to compare string or arithmetic values or variables to yield 0 (false) or 1 (true). Logical operators AND, OR and NOT yield boolean results but will accept 0 (false) and any number (true).
User-definable functions are defined using DEF FN, and called using FN. They may take up to 26 numeric and 26 string arguments, and may yield string or numeric results.
There is a full DATA mechanism, using the commands READ, DATA and RESTORE.
A real-time clock is obtainable.

\section*{String Operations And Functions}

Strings can be concatenated with + . String variables or values may be compared with \(=,\rangle,<,\rangle=,<=,<>\) to give boolean results. String functions are VAL, VAL\$, STR \$ and LEN. CHR \$ and CODE convert numbers to characters and vice versa, using the ASCII code. A string slicing mechanism exists, using the form a \$ ( \(x\) TO y).

\section*{Variable Names}

Numeric - any string starting with a letter (upper and lower case are not distinguished between, and spaces are ignored).
String - A\$ to Z\$.
FOR-NEXT loops - A-Z.
Numeric arrays - A-Z.
String arrays - A \$ to \(\mathbf{Z}\) \$.
Simple variables and arrays with the same name are allowed and distinguished between.

\section*{Arrays}

Arrays may be multi-dimensional, with subscripts starting at 1. String arrays, technically character arrays, may have their last subscript omitted, yielding a string.

\section*{Expression Evaluator}

A full expression evaluator is called during program execution whenever an expression, constant or variable is encountered. This allows the use of expressions as arguments to GOTO, GOSUB, etc.
It also operates on commands allowing the ZX Spectrum to operate as a calculator.

\section*{Cassette Interface}

A tone leader is recorded before the information to overcome the automatic recording level fluctuations of some tape recorders, and a Schmitt trigger is used to remove noise on playback.
All saved information is started with a header containing information as to its type, title, length and address information. Program, screens, blocks of memory, string and character arrays may all be saved separately.
Programs, blocks of memory and arrays may be verified after saving.
Programs and arrays may be merged from tape to combine them with the existing contents of memory. Where two line numbers or variables names coincide, the old one is overwritten.
Programs may be saved with a line number, where execution will start immediately on loading.
The cassette interface runs at 1500 baud, through two 3.5 mm jack plugs.

\section*{Expansion Port}

This has the full data, address and control busses from the Z80A, and is used to interface to the ZXPrinter, the RS232 and NET interfaces and the ZX Microdrives. IN and OUT commands give the I/O port equivalents of PEEK and POKE.

\section*{2X81 Compatibility}

ZX81 BASIC is essentially a subset of ZX Spectrum BASIC. The differences are as follows.
FAST and SLOW: the ZX Spectrum operates at the speed of the ZX81 in FAST mode with the steady display of SLOW mode, and does not include these commands.
SCROLL: the \(Z X\) Spectrum scrolls automatically, asking the operator "scroll?" every time a screen is filled.
UNPLOT: the ZX Spectrum can unplot a pixel using PLOT OVER, and thus achieves unplot.
Character set: the ZX Spectrum uses the ASCII character set, as opposed to the ZX81 non-standard set.

\section*{Specifications}

\title{
MACHINE \\ SPECIFICATIONS
}

\section*{zX80}

\section*{Dimensions}

Width 174 mm ( 6.85 in )
Depth 218 mm ( 8.58 in )
Height 38 mm ( 1.5 in )
Weight \(300 \mathrm{~g}(10.5 \mathrm{oz})\)
Microprocessor/Memory
Z80A 3.25 MHz clock
ROM: 4 K bytes containing BASIC
RAM: 1 K bytes internal, externally expandable to 16 K bytes.

\section*{Display}

Requires an ordinary domestic black and white colour TV. The lead supplied connects between the ZX80 and your TV's aerial socket. The display organisation is 24 lines of 32 characters per line showing black characters on a white screen. The ZX80 does not connect to a printer.
Programming
Programs can be entered on the keyboard or loaded from cassette. The ZX80 has automatic "wrap round" so lines of program can be any length but not multi-statement lines.
Syntax check
The syntax of the entered line is checked character by character. A syntax error cursor marks the first place the syntax breaks down if there is an error. Once any errors have been edited out the syntax error cursor disappears. Only syntax error-free lines of code are accepted by the ZX80. Graphics
Total of 22 graphics symbols giving \(48 \times 64\) pixels resolution consisting of 10 symbols plus space and inverses. Includes symbols for drawing bar charts. Under control of your BASIC program any character can be printed in reverse field.
Editing
The line edit allows you to edit any line of program or input including statement numbers. The edit and cursor control keys are EDIT, RUBOUT, HOME.
Arithmetic
Arithmetic operators \(+,-, x,+\) exponentiate. Relational operators \(<,\rangle,=\), yielding 0 or -1 . Logical operators AND OR NOT yielding boolean result. Relational operators also apply to strings. ZX80 BASIC uses 16 bit two's complement arithmetic ( \(\pm 32767\) ).
Variables
Numeric variable names may be any length, must begin with a letter and consist of alphanumerics. Every character in the name is compared thus an infinity of unique names is available.
String variables may be assigned to or from, shortened but not concatenated. String variable names are AS - Z\$. Strings do not require a dimension statement and can be any length.
Arrays have a maximum dimension of 255 ( 256 elements) each. Array names consist of a single letter \(A-Z\).
Control variable names in FOR. . . NEXT loops consist of a single letter A-Z.

\section*{Expression evaluator}

The full expression evaluator is called whenever a constant or variable is encountered during program execution. This allows you to use expressions in place of constants especially useful in GOTOs, GOSUBs, FOR. . . NEXT etc.

\section*{Immediate mode}

The \(\mathbf{Z X 8 0}\) will function in the "calculator mode" by immedlately executing a statement if it \({ }^{\prime}\) is not preceded with a line number.
Cassette interface
Works with most domestic cassette recorders. The transfer rate is 250 baud using a unique tape-recording format. Other systems are not compatible with the ZX80's. The ZX80 also SAVEs the variables as well as the program on cassette. Therefore you can save the data for updating next time the program is executed. The ZX80 does not support separate data files. The lead supplied with the \(\mathrm{ZX80}\) is fitted with 3.5 mm jack plugs.

\section*{Expansion bus}

At the rear has 8 data, 16 address, 13 control lines from the processor and \(\mathrm{Ov}, 5 \mathrm{v}, 9.11 \mathrm{v}, \overline{0}\) and internal memory control line. These signals enable you to interface the ZX80 to your own electronics, PIO, CTC, SIO if you want I/O ports etc. Power supply
The \(\mathrm{ZX80}\) requires approximately 400 mA from \(7-11 \mathrm{v}\) DC. It has its own internal 5 v regulator.
TV standard
The \(\mathrm{ZX80}\) is designed to work with UHF TVs (channel 36) and is the version required for use in the United Kingdom. The ZX80 USA is designed to work with a VHF TV(American channel 2. European channel 3) and is the version required for the American TV system, also for countries without UHF.

\section*{ZX81}

Dimensions
Width 167 mm ( 6.32 in )
Depth 175 mm ( 6.80 in )
Height 40 mm ( 1.57 in )
Weight \(350 \mathrm{gms}(12.15 \mathrm{oz})\)
Microprocessor/Memory
Z80A 3.25 MHz clock
ROM: Containing 8K BASIC interpreter
RAM: 1 K bytes internal, externally expandable to 16 K bytes.

\section*{Keyboard}

40 key touch-sensitive membrane. Using function mode and single press key-word system, this gives the equivalent of 91 keys and also graphics mode allows an additional 20 graphical and 54 inverse video characters to be entered directly.
Display
Requires an ordinary domestic black and white or colour TV. The aerial lead supplied connects the \(\mathrm{Z} \times 81\) to the TV aerial socket. The display is organised as 24 lines of 32 characters with black characters on a white background.
Two mode speeds
The ZX81 can operate in two software-selectable modes - FAST and NORMAL. FAST is ideal for really high-speed computing. In NORMAL mode however the ZX81 allows continuously moving, flicker-free animated displays

\section*{Printer}

The 8K ROM will permit instructions (LPRINT, LLIST and COPY) to drive the Sinclair ZX Printer.
Programming
Programs can be entered via the keyboard or loaded from cassette. Programs and data can be saved onto cassette so that they

\title{
New From Fuller \\ FD System for the ZX SPECTRUM \\ + £2.50 p \& p.
}


\section*{Professional Keyboard \& Case -}

This unit has the same high standard as our \(\mathrm{ZX81}\) unit.
Tough A.B.S. Plastic case encloses our Keyboard, the Spectrum Printed Circuit Board and the Power Supply.
Our own Power supply is available:- 9 volts DC at 2 amps .
Mains either 110 v or 240 v AC at \(£ 5.95+80 \mathrm{p}\). p \& p.
The Keyboard has 42 keys with all the spectrum functions printed onto them, the full travel key switches have gold plated contacts and a guaranteed life of \(10^{6}\) operations.
INSTALLATION - Simply unscrew the ZX printed circuit board from its case and screw it into the FD case, plug in the keyboard and that's it. No technical know how or soldering required, the built unit is tested and comes with a money back guarantee.

\section*{Spectrum Keyboard and Case Kit £33.95}

Our Mother Board for the spectrum has 2 slots at \(£ 15.95\) or 3 slots at \(£ 19.95\), this unit also fixes inside the case. \(p\) \& \(p 80 p\).

\section*{SPECTRUM SOUND AMPLIFIER \(£ 5.95+80 \mathrm{p} p \& \mathrm{p}\).}

Complete with leads, volume control and loud speaker in tough ABS Plastic case measuring \(5^{\prime \prime} \times 3^{\prime \prime} \times 1^{\prime \prime}\) just plugs into your spectrum MIC input.


SPECTRUM PLUG PLANNER \(-£ 18.95+£ 1.00 p \& p\)


Complete with 3 metres of cable, three 13 amp sockets for TV, Tape etc AND 9 volt at 2 amp power supply with power jack to fit Spectrum or ZX81
The ever popular FD42 Keyboard and case for ZX81 £39.93 including VAT \& Post FD42 as a kit \(£ 33.95\) including VAT \& Post FD42 Built only \(£ 24.95\) including VAT \& Post FD42 Keyboard Kit £18.95 including VAT \& Post

GUARANTEED 14 DAYS DELIVERY FROM RECEIPT OF ORDER, OR CALL TO THE ZX CENTRE.
Mail to FULLER MICRO SYSTEMS,
The ZX Centre, Sweeting Street, Liverpool 2. England, U.K.
AD Code
Please Supply:-
Name
Address
```


[^0]: 䚓？
 OTHREM EERND\＃FF7 SAUE TAN LEN PAUSE

 21 FOR $\mathrm{N}=1$ TO 2
 22
 24 LET $P=F E E K$ 263SE＋PEEK 26397
 ＊ 2 2O RAND
 $\begin{array}{lll}27 & \text { IIM } & \text { A } \\ 30 & \text { LET } \\ \text { A }\end{array}$

